
Partial Evaluation Applied t9
Numerical Computation

Andrew A. Berlin
Artificial Intelligence Laboratory

and
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Abrtract

There have been many demonstrations that the exprek
sive power of Lisp can greatly simplify the process of
writing numerical programs, but at the coat of reduced
performance.[lO][lb] I show that by coupling Lisp’s ab-
stract, expressive style of programming with a compiler
that uses partial evaluation, data abstractions can be
eliminated at compile time, producing extremely high-
performance code. For an important class of numerical
programs, partial evaluation achieves order-of-magnitude
speed-ups over conventional Lisp compilation technol-
ogy. This approach has proven to be especially effective
when used in conjunction with schedulers for VLIW and
highly pipelined architectures, because the elimination
of data structures and procedural abstractions exposes
the low-level parallelism inherent in a computation.

lOtr0dtJCtii

Most modern compilers focus on optimizing a program’s
instructions, without regard for the particular problem
that the program will be used to solve. This limited
perspective forces scientific programs to be taken more
literally than the programmer intended. For example,
a scientist writing a complex program builds up layers
of data abstractions, describing a computation in terms
of high-level data structures; at run time, the computer
actually creates and manipulates these data structures.
Unfortunately, this is rarely what the scientist wants -
the real goal is to perform a numerical computation;
data structures are merely a convenient way of spec-
ifying that computation. Thus to achieve high perfor-
mance, scientists typically do not program by combining
high-level procedures, but instead hand-code specialized
versions of these procedures for the particular applicil-
tion at hand.

I introduce a simple technique for exposing the un-
derlying numerical computation expressed by a high-
level program. This technique is based on the obser-
vation that numerical programs are mostly data inde-
pendent. In other words, a routine such as matrix-
multiply performs a fixed set of multiplications, regard-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

less of the numerical values of the numbers being mul-
tiplied. Even when numerical programa are not data-
independent, they typically coat& extremely large data
independent regions, with only a few data-dependent
branches included for such things as convergence check-
ing and strategy selection, Data-independence is im-
portant because it makes it possible to predict what
operations a program will perform, even before actual
numerical values for its inputs are available. This al-
lows data manipulation aperations to be performed in
advance, at compile time, leaving only the underlying
numerical computation. to he performed at run time.

The key idea is to use partial earrlustion to create a
specialized version of a psagaam for the particular ap
plication at hand. Partial evaluation uses information
about the application to evaluate portions of a program
in advance, thereby creating a specialized program. For
example, given a program that computes force intersc-
tions among N particles, together with the fact that the
particular application of $nterest involves only 9 parti-
cles, partial evaluation creates * program specialized to
handle exactly 9 particles. In the very special csse d
a data-independent computation, there is enough infor-
mation available at compile time far the partial evd-
uator to perform all: data iuanipulation operations in
advance, producing a com$ed program that consists
entirely of numerical aperations.

Considering information about the data associated
with a particular problem is very important, because
many data-dependent, programs become data indepen-
dent once information is awilable about the particular
problem that the program will be used to solve. For
example, a general version of matrix-multiply, in which
the size of the matrix is not known at compile time,
would be datadependent, since. the sequenca of opera-
tions would vary depending upon the size of the matri-
ces being manipulated. This w~dd prevent tbe matrix
reference operationa from being performed at compile
time, requiring that the matrix da&structures be ma-
nipulated at run time, However) by considering infor-
mation about the particular matrices associated with
a given problem, the matrix size can be determined at
compile time, transforming matrix-muftiply into a data-
independent program.

0 1990 ACM 089791-368-X190/000610139 $1.50

;; Typical data at run tine:
(define nars

(n&e-planet ‘mar6
(/ 1 3093500) ;rass
(3-vector -1.295477589 -.8414136141 -.3513513446) ;poaition
(3-vector .3440042606 -.3696674843 -.1789373952))) :velocity

:; Data structure as created at compile tiue:
(define na.rn

(rake-planet *mars
(/ 1 3093500) ;The nase of a planet is knoun at compile tine.

(3-vector ;position
(HAKE-PLACEHOLDER Wars-position-x *floating-point)
(RAKE-PLACEHOLDER ‘mars-position-y ‘floating-point)
(HAKE-PLACEHOLDER *mars-position-z ‘floating-point))

(d-vector ;velocity
(MAKE-PUCEHOLDER ‘mara-velocity-x ‘floating-point)
(HAKE-PLACEHOLDER ‘mars-velocity-y ‘floating-point)
(HAKE-PLACEHOLDER ‘mars-velocity-z Sfloating-point))))

Figure 1: The program’s input data structures are created at compile time. Notice how placeholders are used to
represent those numerical values which will not be available until run time.

Partid Evaluation of DaWndependent Prograrrrp

There is a very simple way to figure out what numerical
computations a data-independent program will perform:
simply execute the program at compile time, and keep
track of what it does! The trick is to create the input
data structures for a particular application at compile
time. Although the actual numerical values for some
pieces of data will not be available until run time, their
locations within the input data-structures are known
at compile time. These missing values are represented
symbolically using a data-structure known as a place-
holder. Placeholders can also be used to hold additional
information about a missing number, such as its type or
its range of possible values.

For example, consider the input data structures for
a program that integrates the motion of the solar sys-
tem. The program takes as input the current positions
of the planets, and produces a new set of positions cor-
responding to one time step later. Since the planets
will be in different positions each time the program is
run, numerical values for the positions are not known
at compiIe time. However, we do know the locations of
these missing values within the input data structures,
and we know that they will be of type floating-point.
Figure 1 shows how placeholders are used to embed this
information in the compile-time input data structures.

Partial evaluation is accomplished by executing the
program symbolically at compile time using the place-
holder based data structures as input. During symbolic
execution, placeholders are treated just like numbers:
they can be consed together to form lists, be stored in
variables, be passed as arguments to procedures, etc.
Anything that would move a number around will also
move a placeholder around. This allows all data ma-
nipulation operations - procedure calls, data structure

manipulations, etc., to be performed at compile time -
the only operations executed at run time are numerical.

Modifying a Lisp implementation to handle the place-
holder data structure is trivial: the definitions of the
lowest level numerical operations (such as + , l , -, /)
are modified,’ such that if an operand is a placeholder,
the operation is delayed until run time, when the actual
numerical value represented by the placeholder is avail-
able. As illustrated in Figure 2, delaying an operation
until run time is achieved by adding an instruction to
the compiled program, and creating a new placeholder
to represent the not-yet-computed result.

Languages such as Lisp are especially well suited to
the use of placeholders, because there are no restrictions
on what type of object can be placed a data structure,
enabling placeholders to be treated exactly like num-
bers. Using this technique in a strictly typed language
such as PASCAL would be somewhat more difficult, be-
cause the type checking mechanism prohibits placing a
placeholder into a data structure that expected a num-
ber.

‘Changing the definitions of the low level operations to ban-
dle placeholders can be trivially achieved through the use of an
ADVICE mechanism, or by redefining the procedures +, l , etc.

140

Compiled Program:

C=cI+B+7

v
Mystery
Number C

Figure 2: The program is executed at compile time. Placeholders are used to represent values which are not yet
available. Those operations for which numerical values are available proceed normally, producing numerical results.
Those operations whose values are not available are delayed until run time by adding an instruction to the compiled
program.

==> (define (square XL) (* x x))
==> (define (mm-of-squares L)

(apply + (rap square L)))

=-> (define input-data
(list (tie-placeholder ‘floating-point) ;placeholder 61

(rake-placeholder ‘floating-point) ;placeholder #2
3.14))

u> (mm-of-squares input-data) ;Execute the program at compile tire

CWILED PROGW (SPECIALIZED smoiwmxw:
(IBPUT 1) ;;nurerical value for placeholder #l
(IWPUT 2) ;;nurerical value for placeholder SC2

(ASSIGB 3 (floating-point-multiply (FETCH I) (FETCH 1)))
(ASSIGH 4 (floating-point-multiply (FETCH 2) (FETCH 2)))
(ASSIGH 5 (floating-point-add (FETCH 3) (FETCH 4) 9.8596))

OULWLT 6)

Figure 3: Specialized code for Sum-of-squares. Notice how the squaring of 3.14 to produce 9.8596 took place at
compile time. Annotating the placeholders with the fact that the input numbers would be of type j?oating-point
enabled the generic arithmetic dispatch to be performed at compile time, allowing floating-point (rather than generic
arithmetic) routines to be used in the compiled program.

141

sun of squares
To illustrate the compilation process, consider the sum-
of-square8 program shown in Figure 3. In this hypothet
ical application, the input ie known to be a list of three
floating-point numbers, the last of which is always 3.14.
Thie information ia encoded in the input data struc-
tures at compile time. Partial evaluation is then per-
formed by symbolically executing the program on the
placeholder-based input data, producing the compiled
program shown in Figure 3. Notice that in the com-
piled program, all data structures and procedure calls
have been eliminated, leaving only numerical operations
to be performed at run time.

Roylance’s code compute8 the sine function by com-
bining several higher-order procedures. He starts by
setting up an infinite Taylor expansion, then truncate8
it to an appropriate number of terms depending on the
number of digit8 of precision required. My compiler
took this collection of procedure cdls, and specialired
them for the particular case of computing the eine func-
tion. The result is a low-level procedure that mirror8
the conventional implementation of sine: A complex ex-
pression full of mysterious numbers, but which execute8
very quickly (Figure 4).

The Sh Function

At the 1988 Lisp and Functional Programming Confer-
ence, Roylance [16] showed how the expressive power
of Lisp can be used to construct an implementation of
the sine function that mirrors our understanding of the
mathematical concepts being employed. This is in con-
trast to conventional implementation8 of sine, which are
based on “concrete arithmetic expressions that include
many mysterious numerical constants.“” Roylance goes
on to complain that the concrete implementations ex-
ecute significantly faster, primarily because Lisp com-
piler technology is not yet sufficiently advanced to per-
form the program transformations necessary to produce
code that is competitive with the traditional program-
ming style. Partial evaluation provides an elegant solu-
tion to thie problem.

‘LdcFP 1968 1161, Pege 8.

Further opt-niz!ut=~

Traditional compiler optimization techniques[Z] can fur-
ther improve the performance of a partially evaluated
program. The most important of these are numerical
optimizations, such a% constant folding, sign targetting,
commou subexpreasion elimination, dead code elimi-
nation, and symbolic simplifications. Although 8ome
optimizations, such 88 constant folding, are performed
incrementally by the partial evaluation process itself,
further improvements can often be obtained once the
entire computation exposed by the partial evaluation
procetw is available. For instance, a symbolic simplifi-
cation may produce opportunities for constant folding,
which in turn may produce opportunities for common-
subexpression elimination. In Roylance’s sine-hdf-9 pro-
cedure, these optimizations were able to combine mul-
tiple calls to EXPT, such that the work they had in
common could be shared. A8 shown in the compiled
code, (EXPT X 6) is computed based on work dready
accomplished by CEXPT X 3). This was not requested
by the original high-level program; it wa8 automatically
derived by the compilation process.

DateDependent Progrm

Performing partial evaluation by symbolically execut-
ing a program works well for data-independent compu-
tations, but runs into problem8 when applied to data-
dependent computations. When the partial evduator
reaches a data-dependent conditional, such a8 an IF
statement, it can not decide whether to evaluate the
consequent or the alternative until run time. In the
general caee, this stop8 the compile-time execution pro
ce88: the program might do vastly different things de-
pending on which branch of the conditional is taken.
Fortunately, in numerical programs, considering infor-
mation about the particular problem that a program
will solve usually makes the data-independent regions
of a program extremely large (often several thousand of
operations), with data-dependent condition& only oc-
curing at the end of these long computations for such
things a8 convergence check8 and strategy aelection.

For programs that are mostly data-independent, par-
tial evaluation can be used to generate highly efficient
code for each datGrdependent region. By incorporat-
ing these partially evaluated routine8 into the Lisp sys-
tem a81 high-performance subroutines, the control mech-
anisms of Lisp can be used to handle the data dependen-
cite. In practice, this division of the program into data-
independent regions harr proven to be effective, but has
the drawback that it limits the scope of the partid evd-

142

;;The original program ie conpoeed of high-level procedures:
(define sine-half-9

&&da (x)
(ternlist-eval

(truncated-series-ep sine-term sine-mono
l.Oe-9 (/ pi 2))

xl))

(sine-half-9 (rake-placeholder ‘X1)

; ;COHPILED PROGRAH:
(define (sine-half -9 x)

(let ((node-2 (* x (* x x1)))
(let ((node-3 (* x (* x node-2))))

(let ((node-4 (* x (* x node-3))))
(let ((node-5 (* x (* x node-4))))

(let ((node-6 (* x (* x node-5))))
(let ((output-l

(+

:x-3
:x-5
;x-7
;x-9
;x-11

(* 1.6059043836821613e-10 (* x (* x node-6111
(+

(a -2.505210838544172e-8 node-6)
(+

(* 2.7557319223985893e-6 node-51
(+

(* -1.984126984126984e-4 node-l)
(+

(e 8.3333333333333336-3 node-31
t+ (* -.I6666666666666666 node-2) x1)))))))

output-l)))))))

Figure 4: Compiled version of Roylance’s sine-half-9 procedure. This procedure computes the sin function for values
of x from -pi/2 to pi/2.

nation optimizations, since the high-level data etruc-
tures that act as interfaces between data-independent
regions cannot be eliminated.

[3] describes certain situations in which it is possi-
ble to partially evaluate beyond da&independent re-
gions. For example, in simple selection operations that
do not change the structure of the data, as in the abso-
lute value function, it is possible to symbolically evalu-
ate ioth the consequent and the alternative, generating
compiled code for both possibilities. A data-dependent
branch is included in the compiled program to choose
among these two different code segments at run time. [3]
and [4] describe situations in which the da&dependent
conditionals used to control loop termination can be
partially evaluated as well.

code sii
Another potential problem with using partial evalua
tion is the size of the compiled program. Partial eval-
uation, ae described in this paper, expands loops asso-
ciated with traversing data structures. However, in ap-
plications that manipulate very large amounts of data,
some loops really ought to be left intact. For example,
consider a piece of code that traverses a large data struc-
ture, such as a quadtree. Partially evaluating the entire
execution of a program that maps over the quadtree
would not be practical - there are too many opera-

tions. It would make more sense to compile the inner
loops that deal with manipulations on one section of
the quadtree, while leaving intact the outermost loop
that traverses the tree. This is in fact the approach
that was used to compile the multipole translation op
erator application, described below. The operation of
the translation operator on a single cube of space wss
compiled, while the outer loop that maps this operator
over all such cubes was left intact.

The problems posed by code size are not nearly as
serious as those posed by data dependencies. For in-
stance, one can envision heuristics that would monitor
the amount of code produced by a loop, and when nec-
essary, inform the partial evaluator to only unroll the
body of the loop if too much code is being generated. On
the other hand, for applications involving small amounts
of data, elimination of data structure manipulation in-
structions often causes the partially evaluated programs
to be smaller than the high-level programs they were
generated from.

Prototype Conpiler

I have implemented a prototype compiler based on these
ideas. This compiler uses the placeholder-based sym-
bolic execution technique to perform partial evaluation.
The partially evaluated program is represented as a data
flow graph, which is then optimized using traditional

143

compiler optimizations. Straightforward transformations
are used to map the resulting data-flow graph into Lisp
syntax, into C syntax, or into register-transfer language.
As illustrated in the sine program (Figure 4), when ex-
pressing a program in Lisp syntax, LET statements are
used to store results that are referenced multiple times,
whereas an instruction whose result is only referenced
once is in-line coded at the point where its result is used.
Similarly, when expressing a program in C syntax, an
array of temporary memory locations is used to store
results that are used more than once, while operations
that are referenced only once are in-line coded.

The partially evaluated programs are invoked from
Lisp as subroutines. Where the original programs used
high-level data structures to receive their inputs and
transmit their outputs, the partially evaluated subrou-
tines take as input numerical values for the input place-
holders, and produce as output numerical values for the
result placeholders. My compiler automatically gener-
ates a set of interface routines that extract numerical
values for the input placeholders from the input data
structures, and that construct the result data structures
based on the values computed for the result placehold-
ers. Program’s that manipulate that low-level input and
output placeholder values directly can avoid the over-
head associated with creating and referencing the high-
level interface data structures.

The prototype compiler does not provide support for
automatically detecting whether it can continue pazt
a conditional branch. By default, the compiler wilI
partially evaluate only a data-independent subroutine,
leaving data-dependencies to be handled by the high-
level program that invokes the subroutines. However, if
requested by the programmer, the partial evaluator will
use the techniques described in [3] to continue partial
evaluation beyond the datsdependency, thereby gener-
ating data-dependent branches in the partially evalu-
ated program.

To measure the effectiveness of partial evaluation on nu-
merical computations, I compared the execution speeds
of the specialized programs produced by my prototype
compiler against those of the same programs compiled
using the LIAR Scheme compiler.3 Measurements were
performed on a variety of scientific programs obtained
from researchers at MIT. These programs were taken
from actual research in progress, and were not modified
for the purposes of this comparison.

The experiments were conducted by compiling each
sample application using the prototype compiler. The
compiler’s output was expressed in C syntax* and com-
piled using the GNU C compiler. The resulting com-
piled program was then linked in to the MIT Scheme

3Speciflcelly, MIT CScheme releaee 7 with Liar compiler ver-
riou 4.38, running on a Hewlett-P&card 9000 Serier 350 with
16 Megabytes of memory. The timing presented do not include
garbage collection time.

‘C wan chosen mcnlv for convenience. The D~~EKUIII could
have been expressed in &heme and then cornpi u&g the Liar
Scheme compiler. However, the optimization algorithmr that the
Scheme compiler urea take a very long time to execute when ap-
plied to the already optimized straight-line segments of code gen-
erated by the partial evaluator. This problem has been corrected
in later vemions of the Liar compiler.

system so that it could be called from Lip as a high-
performance subroutine.

Sanple Applications
A Scheme implementation of a program that computes
force interactions among a set of particles (the N-body
problem) was obtained from Gerry Sussman. This im-
portant application arises in particle physics, astron-
omy, and space travel. The program itself is written
very abstractly, making liberal use of abstraction mech-
anisms, including higher-order procedures, lists, vectors,
table lookups, and set operations. Two specialized ver-
sions of the program were compiled: one for a six body
solar system, and one for a nine body solar system. In
both cazes, the force law (gravitation) and the integra-
tion method (runge-kutta) were chosen at compile time,
and included in the input data structures.

The second program tested was a translation opera-
tor from the multipole method of force approximation.[ZO]
This approximation method is practical for use in fluid-
flow applications, and in simulations involving millions
of particles. The source program was written in Lisp,
primarily to help people understand the numerical meth-
ods being used. As such, it does not take advantage
of special cases in the expansions, such as terms that
are known to have exponents that are zero or one. My
compiler was able to take advantage of these special
cases, providing significant performance improvement.
The variable P, which determines the number of terms
in the multipole expansions, was chosen at compile time.

The last program tested was an adaptive integration
of Duffing’s equation, a small, non-linear differential
equation. This program was taken from Hal Abelson’s
work on automatic characterization of the state space
of dynamical systems[l]. The innermost routine of this
program integrates for one time step. A control-loop
invokes this routine repeatedly until a data-dependent
conditional indicatea that a single period of the func-
tion has been integrated. A declaration was added to
the original program, indicating to the partial evalua-
tor that it should use the techniques described in [3] to
include the data-dependent branch and control loop in
the partially evaluated program.

Results
Table 5 shows the execution times (measured in sec-
onds) for the original program in MIT Scheme; for the
program after having been compiled using the LIAR
Scheme compiler; and for the specialized version of the
program produced by my prototype compiler.

An additional experiment was conducted to measure
the performance of the specialized version of Roylance’s
sine routine (Figure 4). In this experiment, the sp+
cialized sine program produced by partial evaluation
was expressed in Scheme, and then compiled using the
Liar Scheme compiler.5 The performance of the special-
ized routine was compared against that of Roylance’s
high-level program, which was also compiled using the
Liar Scheme compiler. Since no floating-point de&r+
tions were provided, both programs compute sine using

‘This experiment wan performed using MIT CScheme release
7.1 with Liar compiler version 4.70.

144

Figure 5: Timings of the sample applications. It is clear that the specialized primitives are significantly faster than
the Scheme programs they were generated from. For the N-body problem, both the time-step and the m(LBBeB of the
planets were chosen at compile t&e.

generic arithmetic functions. This experiment showed
that the specialized version of the sine routine executes
17 times faster than the high-level program from which
it was derived.

Exposing Parallelism

Partial evaluation has an important role to play in the
programming of parallel computers. Parallel compiling
involves two challenges: identifying the parallelism that
is available in a program, and deciding how to divide
the parallel operations among multiple processors. Par-
tially evaluating a program can greatly simplify both
of these tasks, because parallelising the underlying nu-
merical computation is much easier than parallelizing
the original high-level program. For instance, opportu-
nit& for parallel execution are often masked by inher-
ently sequential data structure references, such as cdr-
chaining through a list, which can often be eliminated
through partial evaluation. Eliminating data structures
also eliminates synchronization points: computations
that reference one part of a data structure frequently
have to wait for the entire data structure to be created
before they can begin their work. To illustrate this ap
preach, figure 6 shows a parallelism profile for a partially
evaluated version of the g-body program.’ This profile
represents the maximum amount of parallel execution
that could occur if an infinite number of processors were
available, with no communication or pipeline delays.

Partial evaluation also simplifies the task of schedul-
ing computations onto multiple processors. In practice,
communication does take time, and some of the paral-
lelism must be devoted to keeping processor pipelines
full. Conditional branches make it difficult to account
for these factors, since the amount of time a computa-
tion will take to complete is not known until the direc-
tion that the branch will take is known. Static sched-
ulers, which schedule instructions at compile time, often
use a technique known as trace-scheduling[g] to guess
which way a conditional branch will go, allowing com-
putations beyond the branch to be performed in parallel
with those that precede the branch. Another approach
is dynamic scheduling, which delays the scheduling da
cisions until run time, but imposes a computational
overhead at. run time. Partial evaluation simplifies the

6Specifically, 12th~order Stormer integration of the Q-body
gravitational attraction problem, with masses choken at compile
time, and timestep chosen at run time.

scheduling problem by eliminating conditional branches
that relate to the structure of the data, thereby allowing
static scheduling to be used effectively on large sections
of a program.

I have implemented a static scheduler, described in
detail in [3], that maps a data-independent compnta-
tion onto multiple pipelined processors. The explicitly
numerical nature of the partially evaluated programs
greatly simplified this task: partial evaluation made the
data flow patterns explicit, allowing the critical paths
of the computation to be identified and given schedul-
ing priority. For a hypothetical system composed of
40 processors, and accounting for pipeliuing and cam-
munication delays,7 this scheduler is able to achieve a
speed-up factor of 90.4 on the S-body problem, utilizing
the processors with 90% efficiency (Figure 7).

Partial evaluation based compiler technology is being
used as the basis for the compiler of the MIT-HP Super-
computer Toolkit project. This project, a joiit research
effort between MIT and Hewlett-Packard, is building a
set of long-instruction word computers, which are to be
interconnected by the user to match the needs of a par-
ticular problem. The processors themselves can perform
two memory references, two integer operations, numer-
ous register accesses, and a floating-point operation, in
every machine cycle. Programming these processors ef-
ficiently is quite challenging: the computation must be
mapped onto the data paths in such a way that enough
data arrives at the floating-point chips to enable them
to initiate a new operation in every cycle.

Partial evaluation aids this scheduling task by prcr
ducing programs that contain extremely long sequences
of numerical operations (often several thousand opera-
tions long), with no intervening branches. This makes
it feasible for the scheduler to reorder the program to
account for pipeline delays, allowing the floating-point
unit to be fully utilized. In addition, this predictabil-
ity allows data motion instructions, such as memory
fetches, to be initiated far in advance of the numerical

‘In this cake, the scheduler is assuming a l-cycle communi-
cation delay. This is measured from just after the data hsa left
the pipeline of the transmitting processor, until jurt before the
data enters the pipeline of the receiving processor. Results for
different communication late&es arc presented in [S] and [S].
This amsly& doea not conaider limitations on communication
bandwidth.

145

operation that needs the data. Work on the Super-
computer Toolkit compiler has progressed to the point
where we can schedule the 6-body program in such a
way as to keep one processor fully utilized.z We are
now working on generalizing this approach to schedule
code for multiple toolkit processors.

Relation to Previous Vbk

Specidii Cunputation

The idea of creating specialized programs has been around
for along time. For example, early versions of SPICE[l4]
generated specialized sparse matrix manipulation rou-
tines to handle the particular set of node equations of
the circuit being simulated. Similarly, %traightline”
implementations of the FFT have be generated, such
that all array indices are computed in advance.[lt] These
routines are typically created using a problem-specific
hand crafted generator program. In contrast, partial
evaluation is a problem-independent technique for trank
forming the original program into a specialized program,
allowing specialization to occur over a larger portion of
the overall problem than it would be practical to hand-
craft a generator program for.

P&al Evaluation

Partial evaluation is also an idea that has been around
for a long time. A thorough review of the field can
be found in [5], including a complete bibliography un-
til 1988. With the exception of its use az a means of
providing programming language extensibility[l7], par-
tial evaluation haz not found much practical use. Ko-
morowski [12] has investigated the application of partial
evaluation to Prolog, and Danvy[?] has done some inter-
esting new work on applying partial evaluation to the
compilation of pattern matching programs. The pri-
mary contribution of my work is to show that partial
evaluation is bazically simple to implement, and can be
put to practical use for compiling numerical programs.

The eymbolic execution technique has proven to be
effective for mostly data-independent programs, but needs
to be made more automatic. A significant recent devel-
opment in partial evaluation technology is Jones’s[ll]
technique of analyzing the binding times of source pro-
grams. This technique enables the partial evaluator to
be applied to itself, which is important for use in auto-
matic compiler generation. Bondorf and Danvy[4] de-
scribe techniques for automating some of the decisions
inherent in the partial evaluation process, such as which
conditionals and loops should be expanded at partial
evaluation time, and which should be left residual in
the partially evaluated program. Their partial evalu-
ation techniques can handle data dependencies better
and more automatically than my symbolic evaluator
can, but require that programs be expressed in a par-
ticular “well-staged” form, due to the approximations
of their binding time analysis. Weise[lS] describes how
to extend the symbolic execution process to allow place-
holders to represent structured data as well as numbers.

*This in a result obtained through simulation of the Toolkit
processor. This processor is being fabricated by Hewlett-
Packard’s Information Architecture Group. We expect to have a
fully operational prototype by April of 1990.

A good starting point for future work would be to inveg
tigate ways to merge some of these recent developments
in partial evaluation technology with the symbolic exe-
cution technique.

Other Optidzation Techniques

Partial evaluation is closely related to several other opti-
mization techniques. The loop-jamming technique pro-
posed by Burge[6] seeks to eliminate intermediate data
structures by appIying transformation rules which re-
arrange a program’s instructions so as to combine the
producer and consumer of a data structure. Wadler’s
listless programming[l8] h as a similar goal, analyzing
the source code of a program to eliminate intermedi-
ate data structures. Partial evaluation differs in that it
involves partial execution of the portions of a program
that are relevant to a particular application, eliminat-
ing data structures by producing and consuming them
at partial evaluation time.

Parallel Progranming

Many compilers for high-performance architectures use
program transformations to exploit low-level parallelism.
For instance, compilers for vector machines unroll loops
to help fill vector registers.[15] Similarly, compilers for
VLIW architectures use tracascheduZing[9] to guess which
way a branch will go, allowing computations beyond
the branch to occur in parallel with those that precede
the branch. However, the effectivenezs of both of these
techniques is limited by their preservation of the user
data structures of the original program, which impose
synchronization requirements. Many of the branches
that trace-scheduling seeks to optimize can simply be
eliminated through the use of partial evalualation. The
two approaches are orthogonal: partial evaluation caz
be used to eliminate conditional tests related to dats
structures, producing large parallelizable basic-blocks,
while trace-scheduling can be used to optimize across
these basic-block boundaries.

146

me/e number

Figure 6: Puallelism profile of the 9-body problem. This graph representa the total puaWiam available in the
problem, accounting for the latency of numerical operations. Exploiting paallelku in thb my would result in l
*peed-up f&or of 97 over a single-procunot implementation, but would require 865 p roemom, which would be used
with only about 11% dfidency.

147

i,

i

i

I

i

i

t
0

Cycle number

Figure 7: The ruult of scheduling the 9-body problem onto 40 pipelined p mrs with a anmunication latency of
one cycle. A total of 66 cyclu are requized to compkk the computdioa. On average, 36.4 of the 40 proceaom are
otilised during uch cyck.

148

Partial evaluation is an important technique that pro-
vides significant performance improvements for an im-
portant class of numerical programs. Implementing par-
tial evaluation using the placeholder technique is ads
quate for data-independent computations, but needs to
be made more general, particularly in the area of au-
tomatically deciding which loops and data structures
should be partially evaluated, and which should be left
for run time evaluations

The combination of the performance gains available
from the elimination of data abstractions with those
available from exploiting the low-level parallelism ex-
posed by partial evaluation have the potential to provide
a performance improvement of 2 to 3 orders of magni-
tude over current technology. This will fundamentally
change the nature of many scientific computations. For
example, modern analog circuit simulators simulate a
single instantiation of a circuit. With the performance
gains available from partial evaluation, it will become
feasible to have the simulator perform a search of the
circuit’s parameter space, recommending new values for
circuit elements such ss resistors and capacitors.

The most exciting result of this work is the abiity of
partial evaluation to make abstractly specified programs
execute efficiently. One of the most frustrating tasks in
scientific programming is transforming an application
into a form that can make use of existing library rou-
tines. Partial evaluation will allow the library routines
to be specialized to match the program, rather than re-
quiring the programmer to transform the program to
match the library routines. This should lead to a new
generation of generalized scientific library routines.

This work would not have been possible without the
contributions of many people. Bill Rozzs wrote the com-
mon subexpression eliminator used to optimize the par-
tially evaluated programs. Bill also wrote the register
allocator for the Supercomputer Toolkit. Hal Abelson,
Tom Simon, Gerry Sussman, Jack Wisdom, and Feng
Zhao contributed scientific programs to be used as test
cases. Much was also learned ss a result of discussions
with Daniel Weise of Stanford University. Daniel and
I are currently cooperating to combine our research re-
sults. Thanks are also due to Olivier Danvy for his
insightful comments.

References and Bibliography

References

[l] Harold Abelson, “The Bifurcation Inter-
preter: A step towards the automatic
analysis of dynamical systems,” MIT
Artitlcial Intelligence Laboratory Memo
1174, Cambridge, MA., September 1989.

[2] Al Aho; Ravi, Sethi; Jeff, Ullman, Com-
pilers: Principles, Techniques, and Tools,
Addison Wesley, 1985.

‘Daniel W&e’s group at Stanford haa made some progress in
this area.

131

141

PI

Bl

PI

PI

PI

[lOI

WI

WI

A. Berlin, uA compilation strategy for nu-
merical programs based on partial evalu-
ation,” MIT Artificial Intelligence Lab*
ratory Technical Report TR-1144, Cam-
bridge, MA., July 1989.

Anders Bondorf and Olivier Danvy,
‘Automatic Autoprojection of Recursive
Equations with Global Variables and Ab
stract Data Types”, DIKU research re--
port 99/94, University of Copenhagen,
Denmark, January 1990.

Bjamer, D., Ershov, A. P., and Jones,
N. D., (eds.), Partial Euahation and
Mixed Computation, North Holland,
1988.

William H. Burge, =An Optimizing Tech-
niques for High Level Programming Lan-
guages” , IBM Thomas J. Watson Re-
search Center Report RC5834 (#25271),
Yorktown Heights, New York, February
1976.

Olivier Danvy, %emanticgDirected Com-
pilation of Non-Linear Patterns”, Tech-
nical Report 303, Indiana University,
Bloomongton, IN., January 1990.

A. Berlin and D. Weise, “Compiling Sci-
entific Programs using Partial Evalua-
tion”, MIT Artificial Intelligence Labora-
tory Memo AIM-1145, Cambridge, MA.,
July 1989.

John R. Ellis, Bulldog: A Compiler for
VLIW Architectures, MIT Press, Cam-
bridge, MA, 1986.

M. Halfant and G.J. Sussman, “Abstrac-
tion in numerical methods”, Proceedings
of the A CM Conference on Lisp and Func-
tional Programming, 1988.

Neil D. Jones, Carsten K. Gomard, An-
ders Bondorf, Olivier Danvy, Torben i@.
Mogensen: “A Self-Applicable Partial
Evaluator for the Lambda-Calculus”, pro-
ceedings of the IEEE Computer Society
1990 International Conference on Com-
puter Languoges, New Orleans, Louisiana,
USA (March 12-15, 1990)

Henryk Jan Komorowski, “A Specifica
tion of an Abstract Prolog Machine and
its application to Partial Evaluation”.
Linkoping Studies in Science and Technol-
ogy Dissertations, No. 69., 1981, Linkop
ing University

[13] L. Robert Morris, “Automatic generation
of time efficient digital signal procezsing
software,” IEEE Tmnsactions on Acow-
tics, Speech, and Signal Processing, Vol.
ASSP-25, No. 1, pps. 74-79, February
1977.

149

[14] Laurence Nagel, SPICE& A Computer
Program to Simulate Semiconductor Cir-
cuits, Electranice Research Laboratory
Report No. ERLM520, University of Cal-
ifornia, Berkeley, May 1975.

(151 Padua, David A., Wolfe, Michael J,, Ad-
vanced Compiler Optimizations for Super-
computers, Communications of the ACM,
Volume 29, Number 12, December 1986.

[16] G. Roylance, “Expressing Mathematical
Subroutines Constructively”, Proceedings
of the ACM Conference on Lisp and Func-
tional Programming, 1988.

[17] Richard Schooler, “Partial Evaluation AB
A Means Of Language Extensibility”.
MIT Laboratory For Computer Science
technical report no. TR-324.

[18] Philip Wadler, “Listlessness is better than
laziness: lazy evaluation and garbage col-
lection at compile-time,” in Proceedings of
the ACM Symposium on Lisp and Func-
tional Programming, Austin, Texas, Au-
gUBt 1984.

[19] Weise, Daniel, “Graphs as an Interme-
diate Representation for Partial Evalu-
ation”, Computer Systems Laboratory,
Stanford University, Submitted for pub-
lication, March 1990.

(201 Feng Zhav, “An O(N) algorithm for three-
dimensional N-body simulations”. TR
995, MIT Artificial Intelligence Labors.-
tory.

150

