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Abstract

There have been many demonstrations that the expres-
sive power of Lisp can greatly simplify the process of
writing numerical programs, but at the cost of reduced
performance.[10][16] I show that by coupling Lisp’s ab-
stract, expressive style of programming with a compiler
that uses partial evaluation, data abstractions can be
eliminated at compile time, producing extremely high-
performance code. For an important class of numerical
programs, partial evaluation achieves order-of-magnitude
speed-ups over conventional Lisp compilation technol-
ogy. This approach has proven to be especially effective
when used in conjunction with schedulers for VLIW and
highly pipelined architectures, because the elimination
of data structures and procedural abstractions exposes
the low-level parallelism inherent in a computation.

Introduction

Most modern compilers focus on optimizing a program’s
instructions, without regard for the particular problem
that the program will be used to solve. This limited
perspective forces scientific programs to be taken more
literally than the programmer intended. For example,
a scientist writing a complex program builds up layers
of data abstractions, describing a computation in texms
of high-level data structures; at run time, the computer
actually creates and manipulates these data structures.
Unfortunately, this is rarely what the scientist wants -
the real goal is to perform a numerical computation;
data structures are merely a convenient way of spec-
ifying that computation. Thus to achieve high perfor-
mance, scientists typically do not program by combining
high-level procedures, but instead hand-code specialized
versions of these procedures for the particular applica-
tion at hand.

I introduce a simple technique for exposing the un-
derlying numerical computation expressed by a high-
level program. This technique is based on the obser-
vation that numerical programs are mostly data inde-
pendent. In other words, a routine such as matrix-
multiply performs a fixed set of multiplications, regard-
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less of the numerical values of the numbers being mul-
tiplied. Even when numerical programs are not data-
independent, they typically contain extremely large data-
independent regions, with only a few data-dependent
branches included for such things as convergence check-
ing and strategy selection. Data-independence is im-
portant because it makes it possible to predict what
operations a program will perform, even before actual
numerical values for its inputs are available. This al-
lows data manipulation operations to be performed in
advance, at compile time, leaving only the underlying
numerical computation to he performed at run time.

The key idea is to use partial cvaluation to create a
specialized version of a program for the particular ap-
plication at hand. Partial evaluation uses information
about the application to evaluate portions of a program
in advance, thereby creating a specialized program. For
example, given a program that cemputes force interac-
tions among N particles, together with the fact that the
particular application of interest involves only 9 parti-
cles, partial evaluation ereates a program specialized to
handle exactly 9 particles. In the very special case of
a data-independent computatioen, there is enough infor-
mation available at compile time for the partial eval-
nator to perform all data manipulation operations in
advance, praoducing a compiled program that consists
entirely of numerical operations.

Considering information about the data associated
with a particular problem is very important, because
many data-dependent programs become data indepen-
dent once information is available about the particular
problem that the program will be used to solve. For
example, a general version of matrix-multiply, in which
the size of the matrix is not known at compile time,
would be data-dependent, since the sequence of opera-
tions would vary depending upon the size of the matri-
ces being manipulated. This would prevent the matrix
reference operations from being perfermed at compile
time, requiring that the matrix data-structures be ma-
nipulated at run time. However, by considering infor-
mation about the particular matrices associated with
a given problem, the matrix size can be determined at
compile time, transforming matrix-multiply into a data-
independent program.



;3 Typical data at run time:
(define mars
(make-planet ’mars
(/ 1 3093500) ;mass

(3-vector -1.295477589 -.8414136141 -.3513513446)
(3-vector .3440042605 ~-.3696674843 -.1789373952)))

;position
svelocity

13 Data structure as created at compile time:

(detine mars
(make-planet ’mars

(/ 1 3093500) ;The mass of a planet is known at compile time.

(3-vector
(MAKE-PLACEHOLDER
(MAKE-PLACEHOLDER
(MAKE-PLACEHOLDER

(3-vector
(MAKE-PLACEHOLDER
(MAKE-PLACEHOLDER
(MAKE-PLACEHOLDER

'mars-position-x
‘mars-position-y
‘mars-position-z

‘mars-velocity-x
'mars-velocity-y
'mars-velocity-2z

;position
*float ing-point)
*floating-point)
*floating-point))

;velocity
*floating-point)
*floating-point)
’floating-point))))

Figure 1: The program’s input data structures are created at compile time. Notice how placeholders are used to
represent those numerical values which will not be available until run time.

Partial Evaluation of Data-Independent Programs

There is a very simple way to figure out what numerical
computations a data-independent program will perform:
simply execute the program at compile time, and keep
track of what it does! The trick is to create the input
data structures for a particular application at compile
time. Although the actual numerical values for some
pieces of data will not be available until run time, their
locations within the input data-structures are known
at compile time. These missing values are represented
symbolically using a data-structure known as a place-
holder. Placeholders can also be used to hold additional
information about a missing number, such as its type or
its range of possible values.

For example, consider the input data structures for
a program that integrates the motion of the solar sys-
tem. The program takes as input the current positions
of the planets, and produces a new set of positions cor-
responding to one time step later. Since the planets
will be in different positions each time the program is
run, numerical values for the positions are not known
at compile time. However, we do know the locations of
these missing values within the input data structures,
and we know that they will be of type floating-point.
Figure 1 shows how placeholders are used to embed this
information in the compile-time input data structures.

Partial evaluation is accomplished by executing the
program symbolically at compile time using the place-
holder based data structures as input. During symbolic
execution, placeholders are treated just like numbers:
they can be consed together to form lists, be stored in
variables, be passed as arguments to procedures, etc.
Anything that would move a number around will also
move a placeholder around. This allows all data ma-
nipulation operations — procedure calls, data structure
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manipulations, etc., to be performed at compile time —
the only operations executed at run time are numerical.

Modifying a Lisp implementation to handle the place-
holder data structure is trivial: the definitions of the
lowest level numerical operations (such as +, =, -, /)
are modified,! such that if an operand is a placeholder,
the operation is delayed until run time, when the actual
numerical value represented by the placeholder is avail-
able. As illustrated in Figure 2, delaying an operation
until run time is achieved by adding an instruction to
the compiled program, and creating a new placeholder
to represent the not-yet-computed result.

Languages such as Lisp are especially well suited to
the use of placeholders, because there are no restrictions
on what type of object can be placed a data structure,
enabling placeholders to be treated exactly like num-
bers. Using this technique in a strictly typed language
such as PASCAL would be somewhat more difficult, be-
cause the type checking mechanism prohibits placing a
placeholder into a data structure that expected a num-
ber.

lChtmging the definitions of the low level operations to han-
dle placeholders can be trivially achieved through the use of an
ADVICE mechanism, or by redefining the procedures +, *, etc.



Mystery Mystery
Number A Number B

\/ 7

Compiled Program:

C=A+B+7

Mystery
Number C

Figure 2: The program is executed at compile time. Placeholders are used to represent values which are not yet
available. Those operations for which numerical values are available proceed normally, producing numerical results.

Those operations whose values are not available are delayed until run time by adding an instruction to the compiled
program.

==> (define (square x) (» x x))
==)> (define (sum-of-squares L)
(apply + (map square L)))

=u> (define input-data
(list (make-placeholder ’floating-point) ;placeholder #1
(make-placeholder ’floating-point) ;placeholder #2
3.14))

=w> (sum-of-squares input-data) ;Execute the program at compile time

COMPILED PROGRAM (SPECIALIZED SUM~-OF-SQUARES):

(INPUT 1) ;;numerical value for placeholder #1
(INPUT 2) ;;numerical value for placeholder #2

(ASSIGN 3 (floating-point-multiply (FETCH 1) (FETCH 1)))
(ASSIGN 4 (floating-point-multiply (FETCH 2) (FETCH 2)))
(ASSIGN 5 (floating-point-add (FETCH 3) (FETCH 4) 9.8596))

(RESULT 5)
Figure 3: Specialized code for Sum-of-squares. Notice how the squaring of 3.14 to produce 9.8596 took place at

compile time. Annotating the placeholders with the fact that the input numbers would be of type floating-point

enabled the generic arithmetic dispatch to be performed at compile time, allowing floating-point (rather than generic
arithmetic) routines to be used in the compiled program.
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Examples
Sum of Squares

To illustrate the compilation process, consider the sum-
of-squares program shown in Figure 3. In this hypothet-
ical application, the input is known to be a list of three
floating-point numbers, the last of which is always 3.14.
This information is encoded in the input data struc-
tures at compile time. Partial evaluation is then per-
formed by symbolically executing the program on the
placeholder-based input data, producing the compiled
program shown in Figure 3. Notice that in the com-
piled program, all data structures and procedure calls
have been eliminated, leaving only numerical operations
to be performed at run time.

The Sine Function

At the 1988 Lisp and Functional Programming Confer-
ence, Roylance [16] showed how the expressive power
of Lisp can be used to construct an implementation of
the sine function that mirrors our understanding of the
mathematical concepts being employed. This is in con-
trast to conventional implementations of sine, which are
based on “concrete arithmetic expressions that include
many mysterious numerical constants.”® Roylance goes
on to complain that the concrete implementations ex-
ecute significantly faster, primarily because Lisp com-
piler technology is not yet sufficiently advanced to per-
form the program transformations necessary to produce
code that is competitive with the traditional program-
ming style. Partial evaluation provides an elegant solu-
tion to this problem.

2L&FP 1988 [16], Page 8.

Roylance’s code computes the sine function by com-
bining several higher-order procedures. He starts by
setting up an infinite Taylor expansion, then truncates
it to an appropriate number of terms depending on the
number of digits of precision required. My compiler
took this collection of procedure calls, and specialized
them for the particular case of computing the sine func-
tion. The result is a low-level procedure that mirrors
the conventional implementation of sine: A complex ex-
pression full of mysterious numbers, but which executes
very quickly (Figure 4).

Further Optimizations

Traditional compiler optimization techniques|2] can fur-
ther improve the performance of a partially evaluated
program. The most important of these are numerical
optimizations, such as constant folding, sign targetting,
common subexpression elimination, dead code elimi-
nation, and symbolic simplifications. Although some
optimizations, such as constant folding, are performed
incrementally by the partial evaluation process itself,
further improvements can often be obtained once the
entire computation exposed by the partial evaluation
process is available. For instance, a symbolic simplifi-
cation may produce opportunities for constant folding,
which in turn may produce opportunities for common-
subexpression elimination. In Roylance’s sine-half-9 pro-
cedure, these optimizations were able to combine mul-
tiple calls to EXPT, such that the work they had in
common could be shared. As shown in the compiled
code, (EXPT X 5) is computed based on work already
accomplished by (EXPT X 3). This was not requested
by the original high-level program; it was automatically
derived by the compilation process.

Data-Dependent Programs

Performing partial evaluation by symbolically execut-
ing a program works well for data-independent compu-
tations, but runs into problems when applied to data-
dependent computations. When the partial evaluator
reaches a data-dependent conditional, such as an IF
statement, it can not decide whether to evaluate the
consequent or the alternative until run time. In the
general case, this stops the compile-time execution pro-
cess: the program might do vastly different things de-
pending on which branch of the conditional is taken.
Fortunately, in numerical programs, considering infor-
mation about the particular problem that a program
will solve usually makes the data-independent regions
of a program extremely large (often several thousand of
operations), with data-dependent conditionals only oc-
curing at the end of these long computations for such
things as convergence checks and strategy selection.
For programs that are mostly data-independent, par-
tial evaluation can be used to generate highly efficient
code for each data-independent region. By incorporat-
ing these partially evaluated routines into the Lisp sys-
tem as high-performance subroutines, the control mech-
anisms of Lisp can be used to handle the data dependen-
cies. In practice, this division of the program into data-
independent regions has proven to be effective, but has
the drawback that it limits the scope of the partial eval-
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;;The original program is composed of high-level procedures:

(define sine-half-9
(lambda (x)
(termlist-eval

(truncated-series-eps sine-term sine-mono
1.0e-9 (/ pi 2))

x)))
(sine-halt-9 (make-placeholder ’X))
; ;COMPILED PROGRAM:

(define (sine-half-9 x)
(let ((node-2 (» x (* x x))))

(let ({node-3 (* x (* x node-2))))

(let ((node-4 (* x (* x node-3))))

(let ((node-5 (* x (* x node-4))))
(let ((node-6 (* x (* x node-5))))

(et ((output-1
+

:X°3
1 &t
X7
;X°9
;X-11

(* 1.6059043836821613e-10 (* x (* x node-6)))

+

(* -2.505210838544172e-8 node-6)

(+

(s 2.7557319223985893e~6 node-5)

+

(% -1.984126984126984e~4 node-4)

(+

(* 8.333333333333333e~-3 node-3)
(+ (* ~.16666666666666666 node-2) x))))))))

output-1)))))))

Figure 4: Compiled version of Roylance’s sine-half-9 procedure. This procedure computes the sin function for values

of x from -pi/2 to pi/2.

uation optimizations, since the high-level data struc-
tures that act as interfaces between data-independent
regions cannot be eliminated.

[3] describes certain situations in which it is possi-
ble to partially evaluate beyond data-independent re-
gions. For example, in simple selection operations that
do not change the structure of the data, as in the abso-
lute value function, it is possible to symbolically evalu-
ate both the consequent and the alternative, generating
compiled code for both possibilities. A data-dependent
branch is included in the compiled program to choose
among these two different code segments at run time. [3]
and [4] describe situations in which the data-dependent
conditionals used to control loop termination can be
partially evaluated as well.

Code Size

Another potential problem with using partial evalua-
tion is the size of the compiled program. Partial eval-
uation, as described in this paper, expands loops asso-
ciated with traversing data structures. However, in ap-
plications that manipulate very large amounts of data,
some loops really ought to be left intact. For example,
consider a piece of code that traverses a large data struc-
ture, such as a quadtree. Partially evaluating the entire
execution of a program that maps over the quadtree
would not be practical — there are too many opera-
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tions. It would make more sense to compile the inner
loops that deal with manipulations on one section of
the quadtree, while leaving intact the outermost loop
that traverses the tree. This is in fact the approach
that was used to compile the multipole translation op-
erator application, described below. The operation of
the translation operator on a single cube of space was
compiled, while the outer loop that maps this operator
over all such cubes was left intact.

The problems posed by code size are not nearly as
serious as those posed by data dependencies. For in-
stance, one can envision heuristics that would monitor
the amount of code produced by a loop, and when nec-
essary, inform the partial evaluator to only unroll the
body of the loop if too much code is being generated. On
the other hand, for applications involving small amounts
of data, elimination of data structure manipulation in-
structions often causes the partially evaluated programs
to be smaller than the high-level programs they were
generated from.

Prototype Compiler

I have implemented a prototype compiler based on these
ideas. This compiler uses the placeholder-based sym-
bolic execution technique to perform partial evaluation.
The partially evaluated program is represented as a data
flow graph, which is then optimized using traditional



compiler optimizations. Straightforward transformations
are used to map the resulting data-flow graph into Lisp
syntax, into C syntax, or into register-transfer language.
As illustrated in the sine program (Figure 4), when ex-
pressing a program in Lisp syntax, LET statements are
used to store results that are referenced multiple times,
whereas an instruction whose result is only referenced
once is in-line coded at the point where its result is used.
Similarly, when expressing a program in C syntax, an
array of temporary memory locations is used to store
results that are used more than once, while operations
that are referenced only once are in-line coded.

The partially evaluated programs are invoked from
Lisp as subroutines. Where the original programs used
high-level data structures to receive their inputs and
transmit their outputs, the partially evaluated subrou-
tines take as input numerical values for the input place-
holders, and produce as output numerical values for the
result placeholders. My compiler autornatically gener-
ates a set of interface routines that extract numerical
values for the input placeholders from the input data
structures, and that construct the result data structures
based on the values computed for the result placehold-
ers. Program’s that manipulate that low-level input and
output placeholder values directly can avoid the over-
head associated with creating and referencing the high-
level interface data structures.

The prototype compiler does not provide support for
automatically detecting whether it can continue past
a conditional branch. By default, the compiler will
partially evaluate only a data-independent subroutine,
leaving data-dependencies to be handled by the high-
level program that invokes the subroutines. However, if
requested by the programmer, the partial evaluator will
use the techniques described in [3] to continue partial
evaluation beyond the data-dependency, thereby gener-
ating data-dependent branches in the partially evalu-
ated program.

Measurements

To measure the effectiveness of partial evaluation on nu-
merical computations, I compared the execution speeds
of the specialized programs produced by my prototype
compiler against those of the same programs compiled
using the LIAR Scheme compiler.* Measurements were
performed on a variety of scientific programs obtained
from researchers at MIT. These programs were taken
from actual research in progress, and were not modified
for the purposes of this comparison.

The experiments were conducted by compiling each
sample application using the prototype compiler. The
compiler’s output was expressed in C syntax* and com-
piled using the GNU C compiler. The resulting com-
piled program was then linked in to the MIT Scheme

3gpecifically, MIT CScheme release 7 with Liar compiler ver-
sion 4.38, running on a Hewlett-Packard 9000 Series 350 with
16 Megabytes of memory. The timings presented do not include
garbage collection time.

4G was chosen merely for convenience. The programs could
have been expressed in Scheme and then compiled using the Liar
Scheme compiler. However, the optimization algorithms that the
Scheme compiler uses take a very long time to execute when ap-
plied to the already optimized straight-line segments of code gen-
erated by the partial evaluator. This problem has been corrected
in later versions of the Liar compiler.

system so that it could be called from Lisp as a high-
performance subroutine.

Sample Applications

A Scheme implementation of a program that computes
force interactions among a set of particles (the N-body
problem) was obtained from Gerry Sussman. This im-
portant application arises in particle physics, astron-
omy, and space travel. The program itself is written
very abstractly, making liberal use of abetraction mech-
anisms, including higher-order procedures, lists, vectors,
table lookups, and set operations. Two specialized ver-
sions of the program were compiled: one for a six body
solar system, and one for a nine body solar system. In
both cases, the force law (gravitation) and the integra-
tion method (runge-kutta) were chosen at compile time,
and included in the input data structures.

The second program tested was a translation opera-
tor from the multipole method of force approximation .[20]
This approximation method is practical for use in fluid-
flow applications, and in simulations involving millions
of particles. The source program was written in Lisp,
primarily to help people understand the numerical meth-
ods being used. As such, it does not take advantage
of special cases in the expansions, such as terms that
are known to have exponents that are zero or one. My
compiler was able to take advantage of these special
cases, providing significant performance improvement.
The variable P, which determines the number of terms
in the multipole expansions, was chosen at compile time.

The last program tested was an adaptive integration
of Duffing’s equation, a small, non-linear differential
equation. This program was taken from Hal Abelson’s
work on automatic characterization of the state space
of dynamical systems[1]. The innermost routine of this
program integrates for one time step. A control-loop
invokes this routine repeatedly until a data-dependent
conditional indicates that a single period of the func-
tion has been integrated. A declaration was added to
the original program, indicating to the partial evalua-
tor that it should use the techniques described in [3] to
include the data-dependent branch and control loop in
the partially evalnated program.

Results

Table 5 shows the execution times (measured in sec-
onds) for the original program in MIT Scheme; for the
program after having been compiled using the LIAR
Scheme compiler; and for the specialized version of the
program produced by my prototype compiler.

An additional experiment was conducted to measure
the performance of the specialized version of Roylance’s
sine routine (Figure 4). In this experiment, the spe-
cialized sine program produced by partial evaluation
was expressed in Scheme, and then compiled using the
Liar Scheme compiler.® The performance of the special-
ized routine was compared against that of Roylance’s
high-level program, which was also compiled using the
Liar Scheme compiler. Since no floating-point declara-
tions were provided, both programs compute sine using

5This experiment was performed using MIT CScheme release
7.1 with Liar compiler version 4.70.
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Performance Measurements ,
[ Problem Tnterpreted | Compiled | Specialized | Speed-Up over Speed-up
Desc. CScheme | CScheme Program Interpreted | over Compiled
6-Body RK 1.7 0.76 0.020 85 38
9-Body RK 3.4 1.50 0.038 89 39
Xlate P=3 0.26 0.022 0.002 130 11
Xlate P=6 2.76 0.28 0.011 250 25
[ Duffing 26.1 4.04 0.53 49 7.6

Figure 5: Timings of the sample applications. It is clear that the specialized primitives are significantly faster than
the Scheme programs they were generated from. For the N-body problem, both the time-step and the masses of the

planets were chosen at compile time.

generic arithmetic functions. This experiment showed
that the specialized version of the sine routine executes
17 times faster than the high-level program from which
it was derived.

Exposing Parallelism

Partial evaluation has an important role to play in the
programming of parallel computers. Parallel compiling
involves two challenges: identifying the parallelism that
is available in a program, and deciding how to divide
the parallel operations among multiple processors. Par-
tially evaluating a program can greatly simplify both
of these tasks, because parallelizing the underlying nu-
merical computation is much easier than parallelizing
the original high-level program. For instance, opportu-
nities for parallel execution are often masked by inher-
ently sequential data structure references, such as cdr-
chaining through a list, which can often be eliminated
through partial evaluation. Eliminating data structures
also eliminates synchronization points: computations
that reference one part of a data structure frequently
have to wait for the entire data structure to be created
before they can begin their work. To illustrate this ap-
proach, figure 6 shows a parallelism profile for a partially
evaluated version of the 9-body program.® This profile
represents the maximum amount of parallel execution
that could occur if an infinite number of processors were
available, with no communication or pipeline delays.
Partial evaluation also simplifies the task of schedul-
ing computations onto multiple processors. In practice,
communication does take time, and some of the paral-
lelism must be devoted to keeping processor pipelines
full. Conditional branches make it difficult to account
for these factors, since the amount of time a computa-
tion will take to complete is not known unti} the direc-
tion that the branch will take is known. Static sched-
ulers, which schedule instructions at compile time, often
use a technique known as trace-scheduling{9] to guess
which way a conditional branch will go, allowing com-
putations beyond the branch to be performed in parallel
with those that precede the branch. Another approach
is dynamic scheduling, which delays the scheduling de-
cisions until run time, but imposes a computational
overhead at run time. Partial evaluation simplifies the

6Speciﬁca.“y, 12th-order Stormer integration of the 9-body
gravitational attraction problem, with masses choben at compile
time, and time-step chosen at run time.

scheduling problem by eliminating conditional branches
that relate to the structure of the data, thereby allowing
static scheduling to be used effectively on large sections
of a program.

I have implemented a static scheduler, described in
detail in [3], that maps a data-independent computa-
tion onto multiple pipelined processors. The explicitly
numerical nature of the partially evaluated programs
greatly simplified this task: partial evaluation made the
data flow patterns explicit, allowing the critical paths
of the computation to be identified and given schedul-
ing priority. For a hypothetical system composed of
40 processors, and accounting for pipelining and com-
munication delays,” this scheduler is able to achieve a
speed-up factor of 36.4 on the 9-body problem, utilizing
the processors with 90% efficiency (Figure 7).

Scheduling for highly pipelined architectures

Partial evaluation based compiler technology is being
used as the basis for the compiler of the MIT-HP Super-
computer Toolkit project. This project, a joint research
effort between MIT and Hewlett-Packard, is building a
set of long-instruction word computers, which are to be
interconnected by the user to match the needs of a par-
ticular problem. The processors themselves can perform
two memory references, two integer operations, numer-
ous register accesses, and a floating-point operation, in
every machine cycle. Programming these processors ef-
ficiently is quite challenging: the computation must be
mapped onto the data paths in such a way that enough
data arrives at the floating-point chips to enable them
to initiate a new operation in every cycle.

Partial evaluation aids this scheduling task by pro-
ducing programs that contain extremely long sequences
of numerical operations (often several thousand opera-
tions long), with no intervening branches. This makes
it feasible for the scheduler to re-order the program to
account for pipeline delays, allowing the fioating-point
unit to be fully utilized. In addition, this predictabil-
ity allows data motion instructions, such as memory
fetches, to be initiated far in advance of the numerical

7In this case, the scheduler is assuming a l-cycle communi-
cation delay. This is measured from just after the data has left
the pipeline of the transmitting processor, until just before the
data enters the pipeline of the receiving processor. Results for
different communication latencies are presented in [3] and [8].
This analysis does not consider limitations on communication
bandwidth.
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operation that needs the data. Work on the Super-
computer Toolkit compiler has progressed to the point
where we can schedule the 6-body program in such a
way as to keep one processor fully utilized.® We are
now working on generalizing this approach to schedule
code for multiple toolkit processors.

Relation to Previous Work
Specialized Computation

The idea of creating specialized programs has been around
for along time. For example, early versions of SPICE[14]
generated specialized sparse matrix manipulation rou-
tines to handle the particular set of node equations of
the circuit being simulated. Similarly, “straight-line”
implementations of the FFT have be generated, such
that all array indices are computed in advance.[13] These
routines are typically created using a problem-specific
hand crafted generator program. In contrast, partial
evaluation is a problem-independent technique for trans-
forming the original program into a specialized program,
allowing specialization to occur over a larger portion of
the overall problem than it would be practical to hand-
craft a generator program for.

Partial Evaluation

Partial evaluation is also an idea that has been around
for a long time. A thorough review of the field can
be found in [5], including a complete bibliography un-
til 1988, With the exception of its use as a means of
providing programming langunage extensibility[17)], par-
tial evaluation has not found much practical use. Ko-
morowski [12] has investigated the application of partial
evaluation to Prolog, and Danvy[7] has done some inter-
esting new work on applying partial evaluation to the
compilation of pattern matching programs. The pri-
mary contribution of my work is to show that partial
evaluation is basically simple to implement, and can be
put to practical use for compiling numerical programs.

The symbolic execution technique has proven to be

effective for mostly data-independent programs, but needs

to be made more automatic. A significant recent devel-
opment in partial evaluation technology is Jones’s[11]
technique of analyzing the binding times of source pro-
grams. This technique enables the partial evaluator to
be applied to itself, which is important for use in auto-
matic compiler generation. Bondorf and Danvy[4] de-
scribe techniques for automating some of the decisions
inherent in the partial evaluation process, such as which
conditionals and loops should be expanded at partial
evaluation time, and which should be left residual in
the partially evaluated program. Their partial evalu-
ation techniques can handle data dependencies better
and more automatically than my symbolic evaluator
can, but require that programs be expressed in a par-
ticular “well-staged” form, due to the approximations
of their binding time analysis. Weise[19] describes how
to extend the symbolic execution process to allow place-
holders to represent structured data as well as numbers.

8:This is a result obtained through simulation of the Toolkit
processor. This processor is being fabricated by Hewlett-
Packard’s Information Architecture Group. We expect to have a
fully operational prototype by April of 1990.

A good starting point for future work would be to inves-
tigate ways to merge some of these recent developments
in partial evaluation technology with the symbolic exe-
cution technique.

Other Optimization Techniques

Partial evaluation is closely related to several other opti-
mization techniques. The loop-jamming technique pro-
posed by Burge[6] seeks to eliminate intermediate data
structures by applying transformation rules which re-
arrange a program’s instructions so as to combine the
producer and consumer of a data structure. Wadler’s
listless programming[18] has a similar goal, analyzing
the source code of a program to eliminate intermedi-
ate data structures. Partial evaluation differs in that it
involves partial execution of the portions of a program
that are relevant to a particular application, eliminat-
ing data structures by producing and consuming them
at partial evaluation time.

Parallel Programming

Many compilers for high-performance architectures use
program transformations to exploit low-level parallelism.
For instance, compilers for vector machines unroll loops
to help fill vector registers.[15] Similarly, compilers for
VLIW architectures use trace-scheduling{9] to guess which
way a branch will go, allowing computations beyond
the branch to occur in parallel with those that precede
the branch. However, the effectiveness of both of these
techniques is limited by their preservation of the user
data structures of the original program, which impose
synchronization requirements. Many of the branches
that trace-scheduling seeks to optimize can simply be
eliminated through the use of partial evalualation. The
two approaches are orthogonal: partial evaluation can
be used to eliminate conditional tests related to data-
structures, producing large parallelizable basic-blocks,
while trace-scheduling can be used to optimize across
these basic-block boundaries.

146



Number Of Operations

20 25 30 35
Cycle number

Figure 6: Parallelism profile of the 9-body problem. This graph represents the total parallelism available in the
problem, accounting for the latency of numerical operations. Exploiting parallelism in this way would result in a
s -up factor of 97 over a single-processor implementation, but would require 865 processors, which would be used
with only about 11% efficiency.
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Figure 7: The result of scheduling the 9-body problem onto 40 pipelined processors with a communication latency of
one cycle. A total of 85 cycles are required to oomplete the computation. On average, 36.4 of the 40 processors are
utilized during each cycle.
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Concdlusions

Partial evaluation is an important technique that pro-
vides significant performance improvements for an im-
portant class of numerical programs. Implementing par-
tial evaluation using the placeholder technique is ade-
quate for data-independent computations, but needs to
be made more general, particularly in the area of au-
tomatically deciding which loops and data structures
should be partially evaluated, and which should be left
for run time evaluation.?

The combination of the performance gains available
from the elimination of data abstractions with those
available from exploiting the low-level parallelism ex-
posed by partial evaluation have the potential to provide
a performance improvement of 2 to 3 orders of magni-
tude over current technology. This will fundamentally
change the nature of many scientific computations. For
example, modern analog circuit simulators simulate a
single instantiation of a circuit. With the performance
gains available from partial evaluation, it will become
feasible to have the simulator perform a search of the
circuit’s parameter space, recommending new values for
circuit elements such as resistors and capacitors.

The most exciting result of this work is the ability of
partial evaluation to make abstractly specified programs
execute efficiently. One of the most frustrating tasks in
scientific programming is transforming an application
into a form that can make use of existing library rou-
tines. Partial evaluation will allow the library routines
to be specialized to match the program, rather than re-
quiring the programmer to transform the program to
match the library routines. This should lead to a new
generation of generalized scientific library routines.
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