Exploiting the Parallelism Exposed by
Partial Evaluation

R. Surati® and A. Berlinb

& MIT Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA
02139, USA

b Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,
USA

Abstract: We describe an approach to parallel compilation that seeks to harness
the vast amount of fine-grain parallelism that is exposed through partial evaluation of
numerically-intensive scientific programs. We have constructed a parallelizing compiler
which uses partial evaluation to break down data abstractions and program structure,
producing huge basic blocks that contain large amounts of fine-grain parallelism. To
utilize this parallelism, we have developed a technique for automatically mapping the fine
grain parallelism onto a coarser grain parallel computer architecture. We selectively group
the fine-grain operations together so as to adjust the parallelism grain-size to match the
inter-processor communication capabilities of the target architecture. On an important
scientific problem, code produced by our compiler for the Supercomputer Toolkit parallel
computer runs 6.2 times faster on eight processors than on one. For an important class of
scientific applications, the coupling of partial evaluation with static scheduling techniques
eliminates the need to require programmers to obscure programs by manually exposing
the parallelism implicit in a computation.

Keyword Codes:
Keywords: Parallel Compilation; Partial Evaluation; Parallel Instruction Scheduling;
Fine-grain Parallelism

1 Introduction

Previous work has shown that partial evaluation is good at breaking down data abstrac-
tion and exposing underlying fine-grain parallelism in a program [3]. We have written a
novel compiler which couples partial evaluation with static scheduling techniques to ex-
ploit this fine-grain parallelism by automatically mapping it onto a coarse-grain parallel
architecture.

Partial evaluation eliminates the barriers to parallel execution imposed by the data
representation and the control structure of a program by taking advantage of information
about the particular problem a program will be used to solve. For example, partial
evaluation is able to perform at compile-time most data structure references, procedure
calls, and conditional branches related to data structure size, leaving mostly numerical

computations to be performed at run time. Partial evaluation is particularly effective on
numerically-oriented scientific programs, since they tend to be mostly data-independent,
meaning that they contain large regions in which the operations to be performed do not
depend on the numerical values of the data being manipulated. For instance, matrix
multiplication performs the same set of operations, regardless of the particular numerical
values of the matrix elements. We use partial evaluation to produce huge basic blocks from
these data-independent numerical regions. These basic blocks often contain thousands of
instructions, two orders of magnitude larger than the basic blocks that typically arise
in high-level language programs. To benefit from the fine-grain parallelism contained in
these huge basic blocks, we schedule the partially-evaluated program for parallel execution
primarily by performing the operations within an individual basic block in parallel.

In order to automatically map the freshly derived fine-grain parallelism onto a mul-
tiprocessor, we developed a technique which coarsens the dataflow graph by selectively
aggregating operations together. This technique uses heuristics which take the commu-
nication bandwidth, inter-processor communication latency, and processor architecture
all into consideration. High inter-processor communication latency requires that there
be enough parallelism available to allow each processor to continue to initiate operations,
even while waiting for results produced elsewhere to arrive. Limited communication band-
width severely restricts the parallelism grain size that may be utilized by requiring that
most values used by a processor be produced on that processor, rather than being received
from another processor. Our approach addresses these problems by tailoring the grain
size adjustment and scheduling heuristics to match the communication capabilities of the
target architecture.

Our compiler operates in four major phases. The first phase performs partial evalu-
ation, followed by traditional compiler optimizations, such as constant folding and dead-
code elimination. The second phase analyzes locality constraints within each basic block,
locating operations that depend so closely on one another that it is clearly desirable that
they be computed on the same processor. These closely related operations are grouped
together to form a higher grain size instruction, known as a region. The third compilation
phase uses heuristic scheduling techniques to assign each region to a processor. The final
phase schedules the individual operations for execution within each processor, accounting
for pipelining, memory access restrictions, register allocation, and final allocation of the
inter-processor communication pathways.

The target architecture of our compiler is the Supercomputer Toolkit | a parallel pro-
cessor consisting of eight independent VLIW processors connected to each other by two
shared communication busses [5]. Performance measurements of actual compiled pro-
grams running on the Supercomputer Toolkit show that the code produced by our compiler
for an important astrophysics application[18] runs 6.2 times faster on an eight-processor
system than does near-optimal code executing on a single processor. The compilation
process of this real world application is used as an example throughout this paper.

2 The Partial Evaluator

Partial evaluation converts a high-level, abstractly written, general purpose program into a
low-level program that is specialized for the particular application at hand. For instance,
a program that computes force interactions among a system of N particles might be
specialized to compute the gravitational interactions among 5 planets of our particular
solar system. This specialization is achieved by performing in advance, at compile time,
all operations that do not depend explicitly on the actual numerical values of the data.

300

240

180.

120.

60.

0.
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Operation Level Parallelism Profile CYcles

Figure 1: Parallelism profile of the 9-body prob-
lem. This graph represents all of the parallelism

available in the problem, taking into account the

varying latency of numerical operations.

(B)

Figure 2: A Simple Region Forming Heuris-
tic. A region is formed by grouping together oper-
ations that have a simple producer/consumer rela-
tionship. This process is invoked repeatedly, with
the region growing in size as additional producers
are added. The region-growing process terminates
when no suitable producers remain, or when the
maximum region size is reached. A producer is
considered suitable to be included in a region if it
produces its result solely for use by that region.
(The numbers shown within each node reflect the

computational latency of the operation.)

Region | Number of
Size Regions

1 108
2 28

3 28
5 56

6 1
7

14 36

41 24

43 3

Table 1: The numerical operations in the 9-body
program were divided into regions based on local-
ity. This table shows how region size can vary de-
pending on the locality structure of the computa-
tion. Region size is measured by computational la-
tency (cycles). The program was divided into 292
regions, with an average region size of 7.56 cycles.

The maximal region size used was 43 cycles

5

Processors
5
o

100

0.
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Heuristic Limited(no size limit imposed) <Y
Parallelism Profile
Figure 3: Parallelism profile of the 9-body prob-
lem after operations have been grouped together
to form regions. Comparison with Figure 1 clearly
shows that increasing the grain-size significantly
reduced the opportunities for parallel execution.
The maximum speedup factor dropped from 69 to

49 times faster than a single processor execution.

Many data structure references, procedure calls, conditional branches, table lookups,
loop iterations, and even some numerical operations may be performed in advance, at
compile time, leaving only the underlying numerical operations to be performed at run
time

Our compiler exposes fine-grain parallelism using a simple partial evaluation strategy
based on a symbolic execution technique described in [4, 3].! Despite this technique’s sim-
plicity, it works well at exposing fine-grain parallelism. Figure 1 illustrates a parallelism
profile analysis of the nine-body gravitational attraction problem of the type discussed
in [18].2 Partial evaluation exposed so much low-level parallelism that in theory, parallel
execution could speed up the computation by a factor of 69 over a uniprocessor.

3 Adjusting the Grain Size

Searching for an optimal schedule for a program which exploits fine-grain parallelism is
both computationally expensive and difficult to achieve. Rather than do an exhaustive
search for the optimal schedule, we developed a heuristic technique to coarsen the exposed
fine-grain parallelism to a grain size suitable for critical-path based static scheduling.
Prior to initiating critical-path based scheduling, we perform locality analysis that groups
together operations that depend so closely on one other that it would not be practical
to place them in different processors. Each group of closely interdependent operations
forms a larger grain size macro-instruction, which we refer to as a region.> Some regions
are large, while others may be as small as one fine-grain instruction. In essence, grouping
operations together to form a region is a way of simplifying the scheduling process by
deciding in advance that certain opportunities for parallel execution will be ignored due
to limited communication capabilities.

Since operations within a region will occur on the same processor, the maximum region
size must be chosen to match the communication capabilities of the target architecture.
For instance, if regions are permitted to grow too large, a single region might encompass
the entire data-flow graph, forcing the entire computation to be performed on a single
processor! Although strict limits are therefore placed on the maximum size of a region,
regions need not be of uniform size. Indeed, some regions will be large, corresponding
to localized computation of intermediate results, while others will be quite small, corre-
sponding to results that are used globally throughout the computation.

We have experimented with several different heuristics for grouping operations into
regions. The optimal strategy for grouping instructions into regions varies with the ap-
plication and with the communication limitations of the target architecture. However,
we have found that even a relatively simple grain size adjustment strategy dramatically
improves the performance of the scheduling process. As illustrated in Figure 2, when a
value is used by only one instruction, the producer and consumer of that value may be
grouped together to form a region, thereby ensuring that the scheduler will not place the

I More complex partial evaluation strategies that address data-dependent computations may be found
in [9, 11, 10].

2Specifically, one time-step of a 12th-order Stormer integration of the gravity-induced motion of a
9-body solar system.

3The name region was chosen because we think of the grain size adjustment technique as identifying
“regions” of locality within the data-flow graph. The process of grain size adjustment is closely related
to the problem of graph multisection, although our region-finder is somewhat more particular about the
properties (shape, size, and connectivity) of each “region” sub-graph than are typical graph multisection
algorithms.

producer and consumer on different processors in an attempt to use spare cycles wher-
ever they happened to be available. Provided that the maximum region size is chosen
appropriately,* grouping operations together based on locality prevents the scheduler from
making gratuitous use of the communication channels, forcing it to focus on scheduling
options that make more effective use of the limited communication bandwidth.

An important aspect of grain size adjustment is that the grain size is not increased
uniformly. As shown in Table 1, some regions are much larger than others. Indeed, it is
important not to forcibly group non-localized operations into regions simply to increase
the grain size. For example, it is likely that the result produced by an instruction that has
many consumers will be transmitted amongst the processors, since it is not practical to
place all of the consumers on the result-producing processor. In this case, creating a large
region by grouping together the producer with only some of the consumers increases the
grain size, but does not reduce inter-processor communication, since the result would need
to be transmitted anyway. In other words, it only makes sense to limit the scheduler’s
options by grouping operations together when doing so will clearly reduce inter-processor
communication.

4 Parallel Scheduling

Exploiting locality by grouping operations into regions forces closely-related operations
to occur on the same processor. Although this reduces inter-processor communication
requirements, it also eliminates many opportunities for parallel execution. Figure 3 shows
the parallelism remaining in the 9-body problem after operations have been grouped
into regions. Comparison with Figure 1 shows that increasing the grain size eliminates
about half of the opportunities for parallel execution. The challenge facing the parallel
scheduler is to make effective use of the limited parallelism that remains, while taking
into consideration such factors as communication latency, memory traffic, pipeline delays,
and allocation of resources such as processor buses and inter-processor communication
channels.

Our compiler schedules operations for parallel execution in two phases. The first phase,
known as the region-level scheduler, is primarily concerned with coarse-grain assignment
of regions to processors, generating a rough outline of what the final program will look
like. The region-level scheduler assigns each region to a processor; determines the source,
destinations, and approximate time of transmission of each inter-processor message; and
determines the preferred order of execution of the regions assigned to each processor. The
region-level scheduler takes into account the latency of numerical operations, the inter-
processor communication capabilities of the target architecture, the structure (critical
path) of the computation, and which data values each processor will store in its mem-
ory. The region-level scheduler does not concern itself with finer-grain details such as
the pipeline structure of the processors, the detailed allocation of each communication
channel, or the ordering of individual operations within a processor. At the coarse grain
size associated with the scheduling of regions, a straightforward set of critical-path based
scheduling heuristics® have proven quite effective. For the 9-body problem example, the

4The region size must be chosen such that the computational latency of the operations grouped
together is well-matched to the communication bandwidth limitations of the architecture. If the regions
are made too large, communication bandwidth will be under utilized since the operations within a region
do not transmit their results.

>The heuristics used by the region-level scheduler are closely related to list-scheduling [13]. A detailed
discussion of the heuristics used by the region-level scheduler is presented in [1].

computational load was spread so evenly that the variation in utilization efficiency among
the 8 processors was only one percent.

The final phase of the compilation process is instruction-level scheduling. The region-
level scheduler provides the instruction-level scheduler with an ordered list of regions to
execute on each processor along with a list of results that need to be transmitted when
they are computed. The instruction-level scheduler chooses the final ordering of low-level
operations within each processor, taking into account processor pipelining, register al-
location, memory access restrictions, and availability of inter-processor-communication
channels. Whenever possible, the order of operations is chosen so as to match the prefer-
ences of the region-level scheduler, represented by the ordered list of regions. However, the
instruction-level scheduler is free to reorder operations as needed, intertwining operations
among the regions assigned to a particular processor, without regard to which coarse-grain
region they were originally a member of. This strategy allows the instruction scheduler to
maintain a schedule similar to the one suggested by the region scheduler, thereby ensur-
ing that the results will be produced at approximately the time that other processors are
expecting them, while still taking advantage of fine grain parallelism available in other
regions to fill pipeline slots as needed.

The instruction-level scheduler derives low-level pipelined instructions for each proces-
sor, choosing the exact time and communication channel for each inter-processor transmis-
sion, and determining where values will be stored within each processor. The instruction-
level scheduling process begins with a data-use analysis that determines which instructions
share data values and should therefore be placed near each other for register allocation
purposes. This data-use information is combined with the higher-level ordering prefer-
ences expressed by the region-level scheduler, producing a scheduling priority for each
instruction. The instruction scheduling process then proceeds one cycle at a time, per-
forming scheduling of that cycle on all processors before moving on to the next cycle.
Instructions compete for resources based on their scheduling priority; in each cycle, the
highest-priority operation whose data and processor resources are available will be sched-
uled. This competition for data and resources helps to keep each processor busy, by
scheduling low-priority operations whose resources are available whenever the resources
for higher priority computations are not available. Indeed, when the performance of the
instruction-scheduler is measured independently of the region-level scheduler, by gener-
ating code for a single Supercomputer Toolkit VLIW processor, utilization efficiencies in
excess of 99.7% are routinely achieved, representing nearly optimal code.

An aspect of the scheduler that has proven to be particularly important is the retroac-
tive scheduling of memory references. Although computation instructions (such as +
or %) are scheduled on a cycle-by-cycle basis, memory LOAD instructions are scheduled
retroactively, wherever they happen to fit in. For instance, when a computation instruc-
tion requires that a value be loaded into a register from memory, the actual memory
access operation® is scheduled in the past for the earliest moment at which both a reg-
ister and a memory-bus cycle are available; the memory operation may occur fifty or
even one-hundred instructions earlier than the computation instruction. Supercomputer
Toolkit memory operations must compete for bus access with inter-processor messages, so
retroactive scheduling of memory references helps to avoid interference between memory
and communication traffic.

60n the toolkit architecture, two memory operations may occur in parallel with computation and
address-generation operations. This ensures that retroactively scheduled memory accesses will not inter-
fere with computations from previous cycles that have already been scheduled.

Program Single Eight Speedup
Processor | Processors
Cycles Cycles
ST6 5811 954 6.1
ST9 11042 1785 6.2
ST12 18588 3095 6.0
RK9 6329 1228 5.2

Table 2: Speedups of various applications run-
ning on 8 processors. Four different computa-
tions have been compiled in order to measure
the performance of the compiler: a 6 particle
stormer integration(ST6), a 9 particle stormer
integration(ST9), a 12 particle stormer integra-
tion(ST12), and a 9 particle fourth-order Runge
Kutta integration(RK9).

processor execution time of the computation di-

Speedup is the single

vided by the total execution time on the multipro-

Cessor.

Pr ocessor s
D

%@ 6 % 120 150 180 210 240 210 C300| 330
e cle
Processor Utilization per Cycle Y

Figure 4: The result of scheduling the 9-body
problem onto 8 Supercomputer Toolkit processors.
Comparison with with the region-level parallelism
profile (figure 3) illustrates how the scheduler
spread the course-grain parallelism across the pro-
cessors. A total of 340 cycles are required to com-
plete the computation. On average, 6.5 of the 8

processors are utilized during each cycle.

SPEEDUP VS PROCESSORS

N-body Stormer Integrator

14
13
12
-~ ST9
11 o Ideal
% 10,
a9
@)
A
2 =
1
0
0123456 78 91011121314
PROCESSORS
Figure 5: Speedup graph of Stormer integra-

tions. Ample speedups are available to keep the
8-processor Supercomputer Toolkit busy, However,
the incremental improvement of using more than

10 processors is relatively small.

Total Bus Utilization vs Processor s

100

907
801
701
607
507
401
307
201
101

Per centage Utilization of Both Busses

O-ZI.2345678910111213

Number of Processors

Figure 6: Utilization of the inter-processor com-
munication pathways. The communication system
becomes saturated at around 10 processors. This
accounts for the lack of incremental improvement
available from using more than 10 processors that

was seen in Figure 5.

Figure 4 illustrates the effectiveness of the instruction level scheduler on the nine-
body problem example.

5 Performance Measurements

The Supercomputer Toolkit and our associated compiler have been used for a wide variety
of applications, ranging from computation of human genetic pedigrees to the simulation
of electrical circuits. The applications that have generated the most interest from the
scientific community involve various integrations of the N-body gravitational attraction
problem.” Parallelization of these integrations has been previously studied by Miller[17],
who parallelized the program by using futures to manually specify how parallel execution
should be attained. Miller shows how one can re-write the N-body program so as to
eliminate sequential data structure accesses to provide more effective parallel execution,
manually performing some of the optimizations that partial evaluation provides auto-
matically. Others have developed special-purpose hardware that parallelizes the 9-body
problem by dedicating one processor per planet.[16] Previous work in partial evaluation
[2, 4, 3] has shown that the 9-body problem contains large amounts of fine-grain par-
allelism, suggesting that more subtle parallelizations are possible without the need to
dedicate one processor to each planet.

We have measured the effectiveness of coupling partial evaluation with grain size ad-
justment to generate code for the Supercomputer Toolkit parallel computer, an archi-
tecture that suffers from serious inter-processor communication latency and bandwidth
limitations. Table 2 shows the parallel speedups achieved by our compiler for several
different N-body interaction applications. Figure 5 focuses on the 9-body program (ST9)
discussed earlier in this paper, illustrating how the parallel speedup varies with the num-
ber of processors used. Note that as the number of processors increases beyond 10, the
speedup curves level off. A more detailed analysis has revealed that this is due to the
saturation of the inter-processor communication pathways, as illustrated in Figure 6. The
accuracy of these results was verified by executing the 9-body program on the actual
Supercomputer Toolkit hardware in an eight processor configuration.

An important drawback to the partial evaluation approach is that it results in the
unrolling of loops, which can potentially lead to an explosion in the size of the compiled
program. We have found that depending on the size of the data set being manipulated,
partial evaluation may reduce the overall size of the program, by eliminating data accesses,
branches, and abstraction-manipulation code; or partial evaluation may increase the size
of the program by iterating over a large data set. The key to making successful use of the
partial evaluation technique is to not carry it too far. For relatively small applications,
such as the 9-body integration program, it was practical to partially-evaluate the entire
computation; on the other hand, if one was simulating a galaxy containing millions of stars,
it would probably be best not to partially-evaluate some of the outermost loops! Our work
focuses on achieving efficient parallel execution of the partially-evaluated segments of a
program, leaving the decision of which portions of a program should be subjected to this
compilation technique up to the programmer.

"For instance, [18] describes results obtained using the Supercomputer Toolkit that prove that the solar
system’s dynamics are chaotic.

6 Related Work

The use of partial evaluation to expose parallelism makes our approach to parallel compi-

lation fundamentally different from the approaches taken by other compilers. Tradition-
ally, compilers have maintained the data structures and control structure of the original
program. For example, if the original program represents an object as a doubly-linked
list of numbers, the compiled program would as well. Only through partial evaluation
can the data structures used by the programmer to think about the problem be removed,
leaving the compiler free to optimize the underlying numerical computation, unhindered
by sequentially-accessed data structures and procedure calls. However, the drawback to
the partial-evaluation approach is that it is only highly efffective for applications that are
mostly data-independent.

Many compilers for high-performance architectures use program transformations to
exploit low-level parallelism. For instance, compilers for vector machines unroll loops
to help fill vector registers. Other parallelization techniques include trace-scheduling,
software pipelining, vectorizing, as well as static and dynamic scheduling of data-flow
graphs.

6.1 Trace Scheduling

Compilers that exploit fine-grain parallelism often employ trace-scheduling techniques [14]
to guess which way a branch will go, allowing computations beyond the branch to occur
in parallel with those that precede the branch. Our approach differs in that we use
partial evaluation to take advantage of information about the specific application at hand,
allowing us to totally eliminate many data-independent branches, producing basic blocks
on the order of several thousands of instructions, rather than the ten to thirty instructions
typically encountered by trace-scheduling based compilers. An interesting direction for
future work would be to add trace-scheduling to our approach, to optimize across the
data-dependent branches that occur at basic block boundaries.

Most trace-scheduling based compilers use a variant of list-scheduling[13] to parallelize
operations within an individual basic block. Although list-scheduling using critical-path
based heuristics is very effective when the grain size of the instructions is well-matched
to inter-processor communication bandwidth, we have found that in the case of limited
bandwidth, a grain size adjustment phase is required to make the list-scheduling approach
effective.®

6.2 Software Pipelining

Software Pipelining [12] optimizes a particular fixed size loop structure such that several
iterations of the loop are started on different processors at constant intervals of time. This

8The partial-evaluation phase of our compiler is currently not very well automated, requiring that
the programmer provide the compiler with a set of input data structures for each data-independent
code sequence, as if the data-independent sequences are separate programs being glued together by the
data-dependent conditional branches. This manual interface to the partial evaluator is somewhat of an
implementation quirk; there is no reason that it could not be more automated. Indeed, several Supercom-
puter Toolkit users have built code generation systems on top of our compiler that automatically generate
complete programs, including data-dependent conditionals, invoking the partial evaluator to optimize
the data-independent portions of the program. Recent work by Weise, Ruf, and Katz[9, 10] describes
additional techniques for automating the partial-evaluation process across data-dependent branches.

increases the throughput of the computation. The effectiveness of software pipelining
will be determined by whether the grain size of the parallelism expressed in the looping
structure employed by the programmer matches the architecture: software pipelining can
not parallelize a computation that has its parallelism hidden behind inherently sequential
data references and spread across multiple loops. The partial-evaluation approach on
such a loop structure would result in the loop being completely unrolled with all of
the sequential data structure references removed and all of the fine grain parallelism in
the loop’s computation exposed and available for parallelization. In some applications,
especially those involving partial differential equations, fully unrolling loops may generate
prohibitively large programs. In these situations, partial evaluation could be used to
optimize the innermost loops of a computation, with techniques such as software pipelining
used to handle the outer loops.

6.3 Vectorizing

Vectorizing is a commonly used optimization for vector supercomputers, executing oper-
ations on each vector element in parallel. This technique is highly effective provided
that the computation is composed primarily of readily identifiable vector operations
(such as dot-product). Most vectorizing compilers generate vector code from a scalar
specification by recognizing certain standard looping constructs. However, if the source
program lacks the necessary vector-accessing loop structure, vectorizing performs very
poorly. For computations that are mostly data-independent, the combination of partial
evaluation with static scheduling techniques has the potential to be vastly more effec-
tive than vectorization. Whereas a vectorizing compiler will often fail simply because
the computation’s structure does not lend itself to a vector-oriented representation, the
partial-evaluation/static scheduling approach can often succeed by making use of very fine-
grained parallelism. On the other hand, for computations that are highly data-dependent,
or which have a highly irregular structure that makes unrolling loops infeasible, vectorizing
remains an important option.

6.4 Iterative Restructuring

Iterative restructuring represents the manual approach to parallelization. Programmer’s
write and rewrite their code until the parallelizer is able to automatically recognize and
utilize the available parallelism. There are many utilities for doing this, some of which
are discussed in [15]. This approach is not flexible in that whenever one aspect of the
computation is changed, one must ensure that parallelism in the changed computation is
fully expressed by the loop and data-reference structure of the program.

6.5 Static Scheduling

Static scheduling of the fine-grained parallelism embedded in large basic blocks has also
also been investigated for use on the Oscar architecture at Waseda University in Japan.[6].
The Oscar compiler uses a technique called task fusion that is similar in spirit to the grain
size adjustment technique used on the Supercomputer Toolkit. However, the Oscar com-
piler lacks a partial-evaluation phase, leaving it to the programmer to manually generate
large basic blocks. Although the manual creation of huge basic blocks (or of automated
program generators) may be practical for computations such as an FFT that have a
very regular structure, it is not a reasonable alternative for more complex programs that

require abstraction and complex data structure representations. For example, imagine
writing out the 11,000 floating-point operations for the Stormer integration of the Solar
system and then suddenly realizing that you need to change to a different integration
method. The manual coder would grimace, whereas a programmer writing code for a
compiler that uses partial evaluation would simply alter a high-level procedure call.

7 Conclusions

Partial evaluation has an important role to play in the parallel compilation process, es-
pecially for largely data-independent programs such as those associated with numerically-
oriented scientific computations. Our approach of adjusting the grain size of the compu-
tation to match the architecture was possible only because of partial evaluation: If we
had taken the more conventional approach of using the structure of the program to detect
parallelism, we would then be stuck with the grain size provided us by the programmer.
By breaking down the program structure to its finest level, and then imposing our own
program structure (regions) based on locality of reference, we have the freedom to choose
the grain size to match the architecture. The coupling of partial evaluation with static
scheduling techniques in the Supercomputer Toolkit compiler also eliminates the need to
write programs in an obscure style that makes parallelism more apparent.

Acknowledgements

Guillermo Rozas was a major contributor to the design of the instruction-scheduling
techniques we describe in this paper. We would also like to thank Gerald Sussman and
Jack Wisdom for the celestial integrators.

This work is a part of the Supercomputer Toolkit project, a joint effort between M.I.T.
and Hewlett-Packard corporation.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology and at Hewlett-Packard corporation. Support for
the M.I.T. laboratory’s artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-92-J-4097 and by the National Science Foundation under grant num-
ber MIP-9001651. Andrew Berlin’s work was supported in part by an IBM Graduate
Fellowship in Computer Science.

References

[1] R. Surati, “A Parallelizing Compiler Based on Partial Evaluation”, MIT Artificial
Intelligence Laboratory Technical Report TR-1377, July 1992

[2] A. Berlin, “A compilation strategy for numerical programs based on partial evalua-
tion,” MIT Artificial Intelligence Laboratory Technical Report TR-1144, Cambridge,
MA., July 1989.

[3] A. Berlin and D. Weise, “Compiling Scientific Code using Partial Evaluation,” IEEE
Computer December 1990.

[4] A. Berlin, “Partial Evaluation Applied to Numerical Computation,” Proc. 1990 ACM
Conference on Lisp and Functional Programming, Nice, France, June 1990.

[5] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, G.J. Sussman, and
J. Wisdom “The Supercomputer Toolkit: A general framework for special-purpose

computing”, International Journal of High-Speed Electronics, vol. 3, no. 3, 1992, pp.
337-361.

[6] H. Kasahara, H. Honda, and S. Narita “Parallel Processing of Near Fine Grain Tasks
Using Static Scheduling on OSCAR”, Supercomputing 90, pp 856-864, 1990

[7] B. Kruatrachue and T. Lewis, “Grain Size Determination for Parallel Processing”,
IEEE Software, Volume 5, No 1, January 1988

[8] B. Shirazi, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods
for Static Task Scheduling.”, Journal of Parallel and Distributed Computing, Volume
10, Number 3, Nov 1990.

[9] E. Ruf and D. Weise, “Avoiding Redundant Specialization During Partial Evaluation”
In Proceedings of the 1991 ACM SIGPLAN Symposium on Partial Evaluationand
Semantics-Based Program Manipulation, New Haven, CN. June 1991.

[10] E. Ruf and D. Weise, “Opportunities for Online Partial Evaluation”, Technical Re-
port CSL-TR-92-516, Computer Systems Laboratory, Stanford University, Stanford,
CA. 1992.

[11] N.D. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic Program
Generations Prentice Hall, 1993

[12] M. Lam, “A Systolic Array Optimizing Compiler.” Carnegie Mellon Computer Sci-
ence Department Technical Report CMU-CS-87-187., May, 1987.

[13] J. Ellis, Bulldog: A Compiler for VLIW Architectures, MIT Press, Cambridge, MA,
1986.

[14] J.A. Fisher, “Trace scheduling: A Technique for Global Microcode Compaction.”
IEEFE Transactions on Computers, Number 7, pp.478-490. 1981.

[15] G. Cybenko, J. Bruner, S. Ho, “Parallel Computing and the Perfect Benchmarks.”
Center for Supercomputing Research and Development Report 1191., November 1991

[16] J. Applegate, M. Douglas, Y. Giirsel, P. Hunter, C. Seitz, G.J. Sussman, “A Digital
Orrery,” IEEE Trans. on Computers, Sept. 1985.

[17] J. Miller, “Multischeme: A Parallel Processing System Based on MIT Scheme”. MIT
Laboratory For Computer Science technical report no. TR-402. September, 1987.

[18] G. Sussman and J. Wisdom, “Chaotic Evolution of the Solar System”,Science, Vol-
ume 257, July 1992.

