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Abstract: We describe the key role played by partial
evaluation in the Supercomputer Toolkit, a parallel comput-
ing system for scienti�c applications that e�ectively exploits
the vast amount of parallelism exposed by partial evaluation.
The Supercomputer Toolkit parallel processor and its associ-

ated partial evaluation-based compiler have been used exten-
sively by scientists at M.I.T., and have made possible recent
results in astrophysics showing that the motion of the planets
in our solar system is chaotically unstable.

1 Introduction

In 1989, researchers at M.I.T. and Hewlett-Packard began
a joint e�ort to create the Supercomputer Toolkit , a set
of hardware and software building blocks to be used for
the construction of special-purpose computational instru-
ments for scienti�c applications. Earlier work ([6],[7]) had
shown that partial evaluation of numerical programs that
are mostly data-independent converts a high-level, abstractly
speci�ed program into a low-level, special-purpose program,
providing order-of-magnitude performance improvement and
exposing vast amounts of low-level parallelism. A central fo-
cus of the Supercomputer Toolkit project was to �nd a way
to exploit this extremely �ne-grained parallelism. By com-
bining the performance improvements available from par-
tial evaluation with novel parallel compilation techniques
and a parallel processor architecture speci�cally designed
to execute partially evaluated programs, the Supercomputer
Toolkit system enabled scientists to run an important class
of abstractly-speci�ed programs approximately three orders
of magnitude faster than a conventionally compiled program
executing on the fastest available workstation.

This paper presents an overview of the role played by
partial evaluation in the Supercomputer Toolkit system, de-
scribes the novel parallelism grain-size adjustment technique
that was developed to make e�ective use of the �ne-grained
parallelism exposed by partial evaluation, and summarizes
the various real-world scienti�c projects that have made use
of the Supercomputer Toolkit system.

2 Motivation

Scientists are faced with a dilemma: They need to be able to
write programs in a high-level language that allows them to
express their understanding of a problem, but at the same
time they need their programs to execute very quickly, as

their problems often require weeks or even months of com-
putation time. In the astrophysics community, the situa-
tion had become critical: programs would be written in a
few days in a high level language, only to have weeks or
even months invested in reexpressing the problem so that
it could make better use of a vectorizing subroutine library;
rewriting the entire program in assembly language; or in ex-
treme cases, constructing special-purpose hardware to solve
the problem. ([16]) Although partial evaluation promised to
provide a solution to this dilemma for an important class of
numerically-intensive programs, the parallel hardware and
compilation technology required to take full advantage of
the potential of partial evaluation did not exist.

Much of the design of the Supercomputer Toolkit was
based on the observation (See [7]) that numerical applica-
tions are special in that they are for the most part data-
independent, meaning that the sequence of numerical oper-
ations that will be performed is independent of the actual
numerical values being manipulated. For instance, matrix
multiply performs the same sequence of numerical opera-
tions regardless of the actual numerical values of the matrix
elements. Partial evaluation of a data-independent program
has the e�ect of removing all data abstractions and program
structure, producing a purely numerical program that fully
exposes the low-level parallelism inherent in the underlying
computation.

For the scienti�c applications we were targeting, such as
orbital mechanics calculations, partial evaluation of data-
independent calculations produced purely numerical pro-
grams containing several thousands of oating-point oper-
ations, with the potential for parallel execution of 50 to
100 operations simultaneously. However, the parallelism ex-
posed by partial evaluation is di�cult to exploit, because it
is extremely �ne-grained, at the level of individual numerical
operations.

3 The Supercomputer Toolkit System

The Supercomputer Toolkit is a parallel processor consisting
of eight independent processors connected by two indepen-
dent communication busses. The Toolkit system makes ef-
fective use of the parallelism exploited by partial evaluation
in two ways. First, within each processor, �ne-grain paral-
lelism is used to keep the pipeline of a oating-point chip
set fully utilized. Second, multiple operations can execute
in parallel on multiple processors.



The compilation process consists of four major phases.
The �rst phase begins by using partial evaluation to convert
each data-independent section of a program into a data-
ow graph that consists entirely of numerical operations.
This is followed by traditional compiler optimizations, such
as constant folding and dead-code elimination. The sec-
ond phase analyzes locality constraints within the data-ow
graph and groups �ne-grain operations together to form
higher grain-size instructions known as regions. In the third
phase, critical-path based heuristic scheduling techniques
are used to assign each coarse-grain region to a proces-
sor. Finally, the region boundaries are broken down, and
instruction-level scheduling is performed to assign computa-
tional resources to the �ne-grain operations that have been
assigned to each processor. A very detailed discussion of the
compiler and all of its phases can be found in [3] and [5].

Before discussing the details of the Supercomputer Toolkit
architecture and compilation techniques, we present a set of
measurements intended to provide an idea of the relative
importance of the various sources of performance improve-
ment achieved by the Toolkit system, using a 9-body orbital
mechanics program1 as an example.

1 The performance improvement provided by using par-
tial evaluation to convert a high-level, data-indepen-
dent program into a low-level, purely numerical data-
ow graph was measured by expressing the data-ow
graph in an rtl-style program expressed in the C pro-
gramming language, by using a C vector to store the
numerical value produced by each node in the dataow
graph. Comparison of this low-level (partially evalu-
ated) C program to the original Scheme program (com-
piled by the LIAR Scheme compiler) revealed speed-
ups which typically ranged from 10 to 100 times faster.
In the case of the 9-body program, partial evaluation
provided a speedup factor of 38x. This speedup factor
can be realized through execution in C on traditional
sequential machines as well as through execution on
the Supercomputer Toolkit.

2 The performance improvement provided by the ability
of each Toolkit processor to make e�ective use of �ne-
grain parallelism to keep the oating-point pipeline
full was measured by comparing the sustained rate
attained by each Toolkit processor (12.9 Mops) to
the sustained rate attained by the fastest workstation
available at the time2 (which happened to make use of
the same oating-point chip set as the Supercomputer

Toolkit processor) executing hand-optimized code ex-
pressed in Fortran (2 Mops). Thus the Toolkit's pro-
cessor architecture achieved approximately a 6x per-
formance improvement by enabling multiple �ne-grained
instructions to execute in parallel within the oating-
point chip set.

3 The e�ectiveness of the static scheduling and grain-size
adjustment parallel compilation techniques to make
use of multiple toolkit processors simultaneously was
measured by comparing the execution time of the 9-
body program executing on eight Toolkit processors in
parallel to a virtually optimal uniprocessor implemen-
tation of the 9-body program. A factor of 6.2x per-

1Speci�cally, �ve time-steps of a 12th-order Stormer integration of
the gravity-induced motion of a 9-body solar system.

2An HP9000/835

formance improvement was attained by making use of
eight processors in parallel.

The speedups available from partial evaluation, from the
use of �ne-grain parallelism within each processor, and from
multiprocessor execution are orthogonal. Thus from the
\black box" point of view of our scienti�c user community,
the 9-body program executed in parallel on the Supercom-
puter Toolkit 1413x faster than did the traditionally com-
piled high-level Scheme program executed on a high per-
formance workstation. Of this speedup, a factor of 38 re-
sulted directly from partial evaluation and could have been
achieved by executing the partially-evaluated program in
C on a workstation, while a factor of 37.2 of the speedup
resulted from the ability of the Supercomputer Toolkit hard-
ware to make use of the parallelism exposed by partial eval-
uation.

4 Design Goal: Optimization of Data-Independent Pro-
grams

The Supercomputer Toolkit system was designed based on
the observation that in the scienti�c applications we were
most interested in, such as the integration of ordinary dif-
ferential equations, the data-dependent portions of a pro-
gram tend to be very small, typically taking the form of
error checks or \Is it good enough yet?" style loops, with
the vast majority of the computation occuring in the data-
independent portions of the program. This focus on data-
independent programs was carried to an extreme, leading to
a system that provided extraordinary performance on data-
independent code, but which required that code containing
data-dependent branches be left residual.

In most partial evaluation systems, the partially-evaluated
program is expressed in the same programming language
as the source program, allowing code that is left residual
to intermingle with code that is partially-evaluated. How-
ever, in our system, partially-evaluated code is executed on
a specialized numerical processor that does not support the
original source language. Each piece of code that is not
partially evaluated must be converted (either by hand or
by an application-speci�c program generator) into the low-
level assembly language of each Toolkit processor. Thus in
order to use the Supercomputer Toolkit compiler on a data-
dependent program, the program must �rst be divided up
into data-independent subprograms, each of which are then
compiled (via partial evaluation and parallel scheduling) to
form a high-performance subroutine.

For the numerical applications the toolkit was intended
to be used for, such as the integration of ordinary di�erential
equations, the division of programs into data-independent
subprograms did not pose a major problem, as the complex-
ity inherent in these problems tends to be isolated in one or
two well-de�ned data-independent subprograms. However,
when people from communities outside of the Toolkit's orig-
inally intended user base began to use the Toolkit for prob-
lems exhibiting greater data dependence, the poor handling
of data-dependent branches posed a serious obstacle.

It is important to note that there is no technical ob-
stacle that prevented better handling and limited partial-
evaluation of data-dependent branches. Indeed, our origi-
nal intention was to implement a compilation process that
combined aggressive partial evaluation-based optimization
of data-independent subprograms with traditional code gen-
eration techniques that would handle the data-dependent



branches. However, this integration with traditional tech-
niques was never completed: as soon as the portion of the
compiler that handles data-independent programs became
operational, the allure of the dramatic performance increases
available motivated scientists to start using the system im-
mediately, using a few lines of assembly language to im-
plement the residual data-dependencies, and invoking the
compiled data-independent subprograms from assembly lan-
guage as subroutines. Eventually, a number of the users
built on top of the Toolkit compiler their own application-
speci�c program generators that automatically created the
few lines of assembly-language instructions required to im-
plement the data-dependent branches of their programs.

5 The Partial Evaluator

The Supercomputer Toolkit compiler performs partial evalu-
ation of data-independent programs expressed in the Scheme
dialect of Lisp by using the symbolic execution technique de-
scribed in previously published work by Berlin ([6]). Using
this technique, the input data structures for a particular
problem are provided at compile time, using placeholders to
represent those numerical values that will not be available
until execution time. Partial evaluation occurs by execut-
ing the program symbolically at compile time, creating and
accessing data-structures as necessary, and performing nu-
merical operations whenever possible. The partial evaluator
only leaves as residual those operations whose numerical in-
put values will not be available until execution time. The
partially-evaluated program consists entirely of numerical
operations: the execution of all loops, data-structure refer-
ences and creations, and procedure manipulations occurs at
compile time.

Our partial evaluation strategy proved quite e�ective on
the ordinary di�erential equation style applications we orig-
inally envisioned that the Toolkit would be used for. As
a wider scope of applications began to develop, the most
serious de�ciency in our system proved to be the lack of
support for leaving selected data-structure operations resid-
ual in the partial evaluation process. For instance, although
users might want an operation such as matrix multiply to
be completely unrolled, they might still want the result-
ing data to be stored in a particular matrix format. Our
system eliminated all data-structures, making it di�cult to
perform certain programming tricks that rely on the loca-
tion of a piece of data in memory, and requiring a data-
rearrangement when interfacing with subroutines that had
particular memory-storage expectations.

6 The Toolkit Processor Architecture

Each Supercomputer Toolkit processor is a Very Long In-
struction Word (VLIW) computer. The processor architec-
ture is designed to make e�ective use of the �ne-grain paral-
lelism exposed by partial evaluation by keeping a pipelined
high-performance oating-point chip set fully utilized. In
general, the oating-point chip set produces a 64-bit result
during every cycle, and requires two 64-bit inputs during
each cycle. Constructing a processor that can move around
enough data to keep the oating-point chips busy required
the inclusion within each processor of two independent mem-
ory systems, as illustrated in Figure 1. Each memory system
has its own dedicated integer ALU and register �le for gener-
ating memory addresses, while a third integer ALU handles
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Figure 1: This is the overall architecture of a Supercomputer

Toolkit processor node, consisting of a fast oating-point chip set,

a 5-port register �le, two memories, two integer alu address genera-

tors, and a sequencer.

program-counter sequencing operations. To support inter-
processor communication, each processor has two high-speed
Input/Output ports attached directly to its main register
�les. For a more detailed description of the Supercomputer
Toolkit processor architecture, see [2].

Since partial evaluation eliminated all data-structures
and higher-order procedure calls, the compiler was able to
predict the data needs of the oating-point chips at com-
pile time, giving it the freedom to decide which of the two
memory systems each result would be stored in, and to be-
gin the data movement necessary to support a particular
oating-point operation many cycles in advance of the ac-
tual start of the operation. Due to the pipeline structure of
the oating-point chip set, it is possible to initiate an oper-
ation during each cycle, but the result of that operation is
often not available for use by the next operation. By utiliz-
ing the parallelism exposed by partial evaluation, the Toolkit
compiler was able to schedule operations during these inter-
mediate cycles, thereby keeping the oating-point chip set
fully utilized. Indeed, on a wide variety of applications, the
Supercomputer Toolkit compiler was able to sustain oating-
point unit usage rates in excess of 99%.

In theory, up to twelve Toolkit processors may be com-
bined to form a parallel computing system, although the
largest system ever constructed is an eight processor system.
Each Toolkit processor has its own program-counter and is
capable of independent operation. Special synchronization
and branch control hardware provide the program-counters
of the various processors with the ability to track one an-
other, e�ectively allowing a single program to make use of
multiple processors simultaneously. The experimental re-
sults presented in this paper were performed on an eight pro-
cessor Supercomputer Toolkit, con�gured so that two inde-
pendent inter-processor communication channels were shared
by all eight processors.



7 Parallel Compilation Technology

We have developed parallel compilation software that au-
tomatically distributes a data-independent computation for
parallel execution on multiple processors. Dividing up the
computation at compile time is practical only because par-
tial evaluation eliminates the uncertainty about what nu-
merical operations the compiled program will perform, by
evaluating conditional branch instructions related to data-
structures and strategy selection at compile time. In other
words, all branches of the form \Have we reached the end
of the vector yet?" and \Have we been through this loop 5
times yet?", are eliminated at compile time, leaving for run-
time execution only those branches that actually depend on
the numerical values of the results being computed. Thus
the partial evaluation process is similar to loop unrolling,
but is much more extensive, as partial evaluation also elimi-
nates inherently sequential procedural abstractions and data
structures, such as lists, that would otherwise act as barriers
to parallel execution.

In the compiler community, a sequence of computation
instructions ending in a conditional branch is known as a ba-
sic block. The largest basic blocks produced by traditional
compilers are usually around 10-30 instructions in length,
and reect the calculations expressed within the innermost
loop of a program. In contrast, the basic blocks of a partially
evaluated program are usually several thousand instructions
in length. For example, the basic-block associated with the
9-body programmentioned earlier consisted of 2208 oating-
point instructions. A limitation of the partial evaluation ap-
proach is that for programs that manipulate large amounts
of data, the basic blocks may actually get too long to �t in
memory, at which point it is necessary for the programmer
to declare that certain data-independent branches, such as
outermost loops, should be left intact, limiting the scope of
partial evaluation.

Each basic block produced by partial evaluation may be
represented as a data-independent (static) data-ow graph
whose operators are all low-level numerical operations. Pre-
vious work ([6]) has shown that this graph contains large
amounts of low-level parallelism. For instance, the paral-
lelism pro�le for the 9-body program, illustrated in Figure 2,
indicates that partial evaluation exposed so much low-level
parallelism that in theory, parallel execution could speedup
the computation by a factor of 69x faster than a uniproces-
sor execution. However, achieving this theoretical maximum
speedup factor would require using 516 non-pipelined pro-
cessors capable of instantaneous communication with one
another.3

In practice, much of the available parallelism must be
used within each processor to keep the oating-point pipeline
full, it does take time (latency) to communicate between
processors. As the latency of inter-processor communication
increases, the maximum possible speedup decreases, as some
of the parallelism must be used to keep each processor busy

3We originally chose the 9-body program as an example to ease
comparison with previously published work that also studied this
program, including [11], [6], and [4]. However, there are numerical
discrepancies between the theoretical speedup factors published in
this paper and those presented in our previously published work, due
to improvements that were made to the constant-folding phase of our
compiler. As a result of these improvements, the data-ow graph of
the 9-body program being discussed in this paper has fewer opera-
tions than the data-ow graph used in [6] and [4]. All graphs and
statistics presented in this paper, including the parallelism pro�le,
have been updated to account for this change.

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|
22

|
24

|
26

|
28

|
30

|
32

|
34

|0

|60

|120

|180

|240

|300

|360

|420

|480

|540

 Operation Level Parallelism Profile  Cycles

 P
ro

ce
ss

or
s

Figure 2: Parallelism pro�le of the 9-body problem. This graph

represents all of the parallelism available in the problem, taking into

account the varying latency of numerical operations.

while awaiting the arrival of results from neighboring pro-
cessors. Bandwidth limitations on the inter-processor com-
munication channels further restrict how parallelism may
be used by requiring that most numerical values used by a
processor actually be produced by that processor.

8 Parallel Scheduling Techniques

Previously published work by Berlin and Weise ([4]) sug-
gested the use of critical-path based parallel scheduling tech-
niques to take advantage of the low-level parallelism exposed
by partial evaluation. Critical-path based techniques, which
give priority to the longest computations in a program, are
very e�ective at overcoming latency limitations, but do not
consider bandwidth limitations at all. In other words, a
critical-path based scheduler will seek to schedule a non-
critical path operation on any processor that happens to
be available, without regard to the fact that the operands
and result of that operation may need to be transmitted
between processors. This approach is only e�ective in sit-
uations where a large amount of inter-processor communi-
cation bandwidth is available, making it feasible for many
results to be transmitted between processors.

Each of the Supercomputer Toolkit 's two inter-processor
communication channels can accept one result every other
cycle. As a result of this communication bandwidth limi-
tation, on an eight processor system, only one out of every
eight results produced by a processor can be transmitted to
other processors. Thus on the Toolkit system, roughly seven
out of every eight numerical results used by a processor must
be produced by that processor. We �rst attempted to gener-
ate parallel code for the Supercomputer Toolkit using critical-
path based scheduling techniques similar to those suggested



by Berlin andWeise. Due to communication bandwidth lim-
itations, the results were dismal: On the 9-body program,
a speedup factor of only 2.5x was achieved using eight pro-
cessors.

9 Grain-Size Adjustment

To overcome the scheduling di�culties associated with lim-
ited communication bandwidth, we developed a technique
that adjusts the grain-size of the �ne-grain parallelism ex-
posed by partial evaluation to match the inter-processor
communication capabilities of the architecture. Prior to
initiating critical-path based scheduling, we perform a lo-
cality analysis that groups together operations that depend
so closely on one other that it would not be practical to
place them in di�erent processors. Each group of closely
interdependent operations forms a larger grain-size instruc-
tion, which we refer to as a region.4 In essence, grouping
operations together to form a region is a way of simplify-
ing the scheduling process by deciding in advance that cer-
tain opportunities for parallel execution will be ignored due
to limited communication capabilities. Critical-path based
scheduling is performed and works e�ectively at the region
level, assigning regions to processors, rather than assigning
�ne-grain instructions to processors.

Since all operations within a region are guaranteed to be
scheduled onto the same processor, the maximum region size
must be chosen to match the communication capabilities of
the target architecture. For instance, if regions are permit-
ted to grow too large, a single region might encompass the
entire data-ow graph, forcing the entire computation to be
performed on a single processor! Although strict limits are
therefore placed on the maximum size of a region, regions
need not be of uniform size. Indeed, some regions are large,
corresponding to localized computation of intermediate re-
sults, while other regions are quite small, corresponding to
results that are used globally throughout the computation.

We have experimented with several di�erent heuristics
for grouping operations into regions. The optimal strategy
for grouping instructions into regions varies with the appli-
cation and with the communication limitations of the target
architecture. However, we have found that even a relatively
simple grain-size adjustment strategy dramatically improves
the performance of the scheduling process. For instance, as
illustrated in Figure 3, when a value is used by only one
instruction, the producer and consumer of that value are
grouped together to form a region, thereby ensuring that the
scheduler will not place the producer and consumer on dif-
ferent processors in an attempt to use spare cycles wherever
they happen to be available. Provided that the maximum
region size is chosen appropriately,5 grouping operations to-
gether based on locality prevents the scheduler from making
gratuitous use of the communication channels, forcing it to

4The name region was chosen because we think of the grain-size
adjustment technique as identifying \region" of locality within the
data-ow graph. The process of grain-size adjustment is closely re-
lated to the problem of graph multisection, although our region-�nder
is somewhat more particular about the properties (shape, size, and
connectivity) of each \region" sub-graph than are typical graph mul-
tisection algorithms.

5The region size must be chosen such that the computational la-
tency of the operations grouped together is well-matched to the com-
munication bandwidth limitations of the architecture. If the regions
are made too large, communication bandwidth will be underutilized
since the operations within a region do not transmit their results.

1*

D

1- 1
+

1*

/

5

A           B          C

R2

R1

Figure 3: A Simple Region Forming Heuristic. A region

is formed by grouping together operations that have a simple pro-

ducer/consumer relationship. This process is invoked repeatedly,

with the region growing in size as additional producers are added.

The region-growing process terminates when no suitable producers

remain, or when the maximum region size is reached. A producer is

considered suitable to be included in a region if it produces its result

solely for use by that region. (The numbers shown within each node

reect the computational latency of the operation.)

focus on scheduling options that make more e�ective use of
the limited communication bandwidth.

Exploiting locality by grouping operations into regions
forces closely-related operations to occur on the same pro-
cessor. Although this reduces inter-processor communica-
tion requirements, it also eliminates many opportunities for
parallel execution. Figure 4 shows the parallelism remaining
in the 9-body problem after operations have been grouped
into regions. Comparison with Figure 2 shows that increas-
ing the grain-size eliminated about half of the opportuni-
ties for parallel execution. The challenge facing the parallel
scheduler is to make e�ective use of the limited parallelism
that remains, while taking into consideration such factors
as communication latency, memory tra�c, pipeline delays,
and allocation of resources such as processor buses and inter-
processor communication channels.

10 Performance Measurements

The �nal result of compiling the 9-body program using the
Supercomputer Toolkit compiler is shown in Figure 5. 6

Notice how the compiler was able to take the available par-
allelism shown in Figure 4 and spread it across the proces-
sors. By utilizing eight processors in parallel, the compiler
was able to achieve a speedup factor of approximately 6.2x
faster than a nearly optimal implementation of this program
running on a single Toolkit processor.

6This �gure represents a single time step of the integration, on
which the compiler achieved a speedup factor of 6.5x using eight pro-
cessors. The more conservative speedup factor quoted throughout this
document for the 9-body problem refers to �ve integration time steps,
thereby including the overhead of moving data around to restart the
computation after each time step.
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Figure 4: Parallelism pro�le of the 9-body problem after operations

have been grouped together to form regions. Comparison with Figure

2 clearly shows that increasing the grain-size signi�cantly reduced

the opportunities for parallel execution. In particular, the maximum

speedup factor dropped from 69 times faster to only 34.5 times faster

than a single processor.
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Figure 5: The result of scheduling the 9-body program onto eight

Supercomputer Toolkit processors. Comparison with with the region-

level parallelism pro�le (�gure 4) illustrates how the scheduler spread

the coarse-grain parallelism across the processors. A total of 340

cycles are required to complete the computation. On average, 6.5 of

the 8 processors are utilized during each cycle.

11 Applications

A variety of scienti�c applications made use of the Super-
computer Toolkit system, ranging from numerical integra-
tion of the solar system to clinical genetic counseling. Some
applications utilized only a single Toolkit processor, while
others ran the same program on multiple processors simul-
taneously, or used the automatic parallelization features of
the compiler to execute a single program on eight processors
in parallel. We present an overview of these applications, fo-
cusing on the role played by partial evaluation, and on the
advantages and di�culties encountered.

Chaos in the Solar System:
The Supercomputer Toolkit application having the most sci-
enti�c importance was a 100-million-year integration of the
entire Solar System, incorporating a post-Newtonian ap-
proximation to General Relativity and corrections for the
quadrupole moment of the Earth-Moon system. The longest
previous such integration ([21]) was for about 3 million years.
The integration performed on the Supercomputer Toolkit con-
�rmed that the evolution of the Solar system as a whole is
chaotic with a remarkably short time scale of exponential
divergence of about 4 million years. A complete analysis of
the integration results appears in [1].

A novel type of symplectic integration strategy was de-
veloped by Wisdom and Holman for use in this application,
and was expressed in the Scheme language using an abstract
programming style. Partial evaluation specialized this inte-
gration strategy for use on the solar system problem with a
particular force law (gravitation) and a particular solar sys-
tem con�guration. The 100-million-year integration used
eight Toolkit processors running in parallel. The computa-
tion was arranged so that each processor simulated a single
solar system, but with each processor starting with slightly
di�erent initial conditions. Chaos was observed by com-
paring the di�erences between the states that evolved from
the slightly varying initial conditions. The Toolkit compiler
was used to generate code for each processor independently.
The compiled code for a single processor contains almost
10,000 Toolkit instructions for each integration step, more
than 98% percent of which correspond to oating-point op-
erations.

This application posed somewhat of a challenge to our
partial evaluation system, as it violated our simple model
of programs as consisting of data-independent inner loops
surrounded by data-dependent branches. Speci�cally, the
new integration strategy took advantage of the elliptical na-
ture of the planetary orbits, making extensive use of se-
lection operations and scienti�c subroutines, some of which
were heavily data-dependent. Thus this program had data-
dependencies at the very core of its innermost loops.

We chose to handle these innermost data dependencies
by providing a mechanism for leaving subroutines residual.
In our hybrid system, this amounted to allowing a partially-
evaluated program to include a call to a data-dependent
hand-coded routine, such as sin. By developing a small li-
brary of code that could be left \residual", that included the
trigonometric functions as well as a few selection operations
such as \return the second argument if the �rst argument is
greater than 0", we were able to abstract away these inner-
most data dependencies, e�ectively burying them inside of
rather simple subroutines.

Note that an alternative approach would have been to use
techniques for extending the placeholder-based partial eval-



uation strategy to allow it to generate code that contains
selection-style conditional branches, as described in [7]. We
did indeed add these techniques to our front-end partial eval-
uator, but have not extended the code generation back-end
to handle conditional branches, primarily because demand
for this functionality from our scienti�c users dropped o�
once the subroutine library of selection operations became
available.

Orrery Veri�cation Experiment:
Another astrophysics application involved verifying results
that had been obtained in 1988 by G. Sussman and J. Wis-
dom using the Digital Orrery to demonstrate that the long-
term motion of the planet Pluto, and by implication the
dynamics of the Solar System, is chaotic ([15]). The Digital
Orrery was a special-purpose parallel computer designed ex-
plicitly to integrate the solar system. Computations run on
the Orrery were parallelized and programmed in microcode
by hand, with one processor devoted to each planet. In
contrast, the program that executed on the Supercomputer
Toolkit was written in Scheme, and automatically compiled
using the Toolkit's partial evaluation-based compiler.

The Orrery integration required integrating the positions
of the outer planets for a simulated time of 845 million years
(note that this is only 6 planets, rather than the 9 in the
whole solar system), which required running the Orrery con-
tinuously for more than three months. The same integra-
tions utilizing a 6-body stormer integrator were performed
on a single toolkit processor, showing that each toolkit pro-
cessor coupled with the compiled partially evaluated code
was about 3 times faster than the entire multiple processor
Digital Orrery.

This program mapped nearly perfectly onto the Toolkit
system. The only data-dependent branches were located at
the outermost \is it done yet?" loop. With the exception of
this single instruction end-test, the entire program was par-
tially evaluated. The abstract programming style enabled by
partial evaluation permitted quad-precision oating-point
operations to be substituted for double-precision operations
with the simple replacement of a few procedure de�nitions.

The Orrery veri�cation experiment ran on a single Toolkit
processor, since the automatic parallelization portion of the
Toolkit compiler was not yet operational at the time the
experiment was performed. Once the automatic parallelizer
was completed, we compiled a Stormer integration of a full 9
planet solar system, generating a program that utilized eight
processors in parallel to achieve a factor of 6.2x speedup over
the single processor Toolkit program. This program, which
we refer to as an example earlier in this paper, was the �rst
to take full advantage of the parallelism exposed by partial
evaluation, and to the best of our knowledge constituted the
fastest integration of the solar system ever achieved.

Circuit Simulation:
Hal Abelson, Jacob Katznelson, and Ognen Nastov wrote
several programs that utilized the toolkit to perform simula-
tion of circuits like phase locked loops. Some of the problems
they studied utilized a runge-kutta integrator, which was
well suited to the Toolkit environment, including a Voltage
Controlled Oscillator and a Phase Locked Loop. Both simu-
lations when compiled by the toolkit compiler were shown to
run approximately 6 times faster on a toolkit processor than
on the best oating point workstation available at the time,
an HP835 running a Fortran version of the same program.

Partial evaluation was used to specialize the circuit sim-

ulator and integration method for the particular circuit be-
ing simulated. When a straightforward integration strategy
such as 4th-order runge-kutta was used, the application was
almost entirely data-independent, mapping very well onto
the Toolkit architecture. However, simulation of many of
the circuits studied required the integration of a sti� sys-
tem of di�erential equations, using a complex and highly
data-dependent Gear integration technique. The Gear inte-
gration technique uses a sparse linear equation solver, which
involves signi�cant data-dependent control ow.

It was possible to utilize the Toolkit compiler to produce
code for the data-independent portions of these simulations,
including the code that implements the dynamic equations
of the circuit itself, but implementation of the highly data-
dependent portions of the GEAR integrator had to be per-
formed by hand in assembly language. This required the
assembly language programer to have knowledge of the stor-
age allocation strategy used by the compiler to store results
in memory, which led to a fairly complex and not very well
organized set of interactions. A much needed enhancement
to our system would be to provide a way for the program-
mer to request that the compiler adhere to a particular data
storage strategy, such as maintaining a particular data rep-
resentation for a matrix, rather than the strategy used by
our current implementation which leaves the compiler free to
store data values in any place that is convenient, including
processor registers.

Interestingly, despite the use of partial evaluation, cir-
cuit simulations involving the Gear integrator ran slowly
compared to other circuit simulators. Later investigation
revealed that this was primarily because this simulator, and
the Gear integrator in particular, did not employ some im-
plementation tricks that are used by other circuit simulators
such as SPICE. However, another factor limiting the per-
formance of this application is that the interface between
the compiled code implementing the circuit dynamics and
the hand-written code implementing the Gear integrator in-
volved a lot of copying of data. A better interface that al-
lows the compiler to take the ultimate destination of a value
into account would provide noticeable performance improve-
ment.

Computation of Lyapunov Exponents:
The toolkit was used in an experiment by Shyam Parekh
to compute the Lyapunov exponents of non-linear systems.
Lyapunov exponents characterize the divergence of the dis-
tance between two trajectories in a dynamical system and
can serve as an indicator of chaotic behavior. The Super-
computer Toolkit system was used to do parameter space
scans of chaotic circuits such as the double scroll circuit.
These theoretical scans were compared against actual scans
performed using a real circuit. The results and implemen-
tation details of these experiments can be found in [19].

An Integration System for Ordinary
Di�erential Equations:
Sarah Ferguson built a software system on top of the toolkit
compiler that takes an equation as input, and automatically
generates a Scheme program to integrate it. Sarah's system
uses the partial-evaluation features of the Toolkit compiler
to specialize the integrator for the particular equation being
integrated, and to generate code for the main body of the
integration. Her system also generates a few lines of Toolkit
assembly language that implement a data-dependent branch
that adjusts the integration step size based on how much in-



tegration error is being encountered. This system performed
quite well, with the data-dependent branches playing a mi-
nor role that did not signi�cantly a�ect system performance.

Elizabeth Bradley used Sarah Ferguson's integration sys-
tem to perform dynamical simulations of chaotic systems as
part of her research on control of chaotic systems ([20]), in-
cluding the Lorenz system and the double pendulum sys-
tem. These systems were a perfect match for both our
partial evaluation technology and the Toolkit architecture,
and executed extremely quickly. Unfortunately, the Toolkit
was designed to support applications that run for a long
time before producing a result, whereas Elizabeth Bradley
needed to capture the intermediate results that were being
produced rapidly. Although the computationally expensive
integration routines mapped very well onto the Toolkit ar-
chitecture, the symbolic routines that analyzed the numeri-
cal results could not be executed on the numerically-oriented
Toolkit system and had to be run on the workstation host.
The program thus became I/O limited, with the Toolkit
computer producing data far more quickly than it could be
transferred to the workstation host. A faster I/O connec-
tion to the Toolkit that would have solved this problem was
designed, but was never constructed.

Clinical Genetic Counseling:
Finally, a program to calculate the probabalistic relation-
ships over a Bayesian Network like a pedigree was written
by Minghsun Liu. This program was designed to be used
to answer the \What if?" types of questions that arise in
genetic counseling when determining the probability that a
potential child may have a particular defect. The compu-
tation time grows exponentially with the number of \un-
known" nodes in the probability tree. However, if certain
assumptions are made about the relative independence of
some of these \unknown" nodes, partial evaluation can play
an important role, signi�cantly reducing the size of the com-
putation, as described in more detail in [17] and [18]. For
any particular program invocation this program performed
well. However, for successive invocations, execution speed
was hampered by lack of the ability to perform incremental
partial evaluation, so that the structure of the network could
be locally changed without triggering the need to recompile
entire probability network.

12 Conclusions and suggestions for future work

To the best of our knowledge, the Supercomputer Toolkit sys-
tem is the �rst to make e�ective use of the vast amount of
low-level parallelism exposed by partial evaluation. Partial
evaluation proved e�ective in virtually all of the applications
encountered during the Supercomputer Toolkit project. In
some cases, the Toolkit and its compiler created new oppor-
tunities to produce important results in science. In other
cases, mostly due to shortcomings in the implementation of
the compilation system, the applications did not map well
onto the Toolkit.

The range of applications that could be run on the Super-
computer Toolkit would have been greatly expanded had the
Toolkit's compiler provided a way of leaving selected data-
dependent branches and data-structures residual. In this
way, heavily data-dependent applications such as the Gear
integrator, that require the existence of data-structures in
a particular format (sparse matrices) on the Toolkit itself
could have been written without the need for hand-coding

in Toolkit assembly language.
The symbolic execution technique for performing partial

evaluation of data-independent programs was simple to im-
plement and worked well. We have already developed some
ways (see [7]) to extend this technique to handle certain
types of data-dependent branches, and can envision extend-
ing it to permit certain data-structures to be left residual.

With recent developments in partial evaluation technol-
ogy, the Toolkit's partial evaluator for data-independent
programs may appear somewhat primitive. However, a key
design goal of our system was to be able to take existing
highly complex and abstract Scheme programs from scien-
tists, unaltered, and run them on the Supercomputer Toolkit.
These programs often included global state, side-e�ects, ma-
nipulation of complex data structures such as streams, and
the storing of higher-order procedures within data-structures.
Such program features pose serious challenges to partial
evaluation technology. It is remarkable that a partial eval-
uation system such as ours, capable of handling only data-
independent programs, could have so large an impact on
science.

As hardware technology evolves, the use of partial eval-
uation to expose parallelism will play an increasingly im-
portant role. As processor clock speeds increase, pipeline
lengths will grow longer, and will require signi�cant amounts
of parallelism to keep them full. But more importantly, as
it becomes possible to build multiple processors on a sin-
gle chip, the vast amount of parallelism exposed by partial
evaluation will play a key role in computation, a�ecting pro-
gramming language and library design as well as the com-
pilation process itself.
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